Skip to main content

Alignment Methods: Strategies, Challenges, Benchmarking, and Comparative Overview

  • Protocol
  • First Online:
Book cover Evolutionary Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 855))

Abstract

Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments’ performance in downstream analyses is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson, J., Higgins, D., and Gibson, T. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  2. Eddy, S. (1995) Multiple alignment using hidden Markov models. Proc Int Conf Intell Syst Mol Biol, 3, 114–120.

    PubMed  CAS  Google Scholar 

  3. Gotoh, O. (1996) Significant improvement in accuracy of multiple protein sequence alignments by iterative refinement as assessed by reference to structural alignments. J Mol Biol, 264, 823–838.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson, J., Plewniak, F., and Poch, O. (1999) BAliBASE: a benchmark alignment database for the evaluation of multiple alignment programs. Bioinformatics, 15, 87–88.

    Article  PubMed  CAS  Google Scholar 

  5. Sauder, J., Arthur, J., and Dunbrack, R. (2000) Large-scale comparison of protein sequence alignment algorithms with structure alignments. Proteins, 40, 6–22.

    Article  PubMed  CAS  Google Scholar 

  6. Van Walle, I., Lasters, I., and Wyns, L. (2005) SABmark–a benchmark for sequence alignment that covers the entire known fold space. Bioinformatics, 21, 1267–1268.

    Article  PubMed  Google Scholar 

  7. Thompson, J., Koehl, P., Ripp, R., and Poch, O. (2005) BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark. Proteins, 61, 127–136.

    Article  PubMed  CAS  Google Scholar 

  8. Edgar, R. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res, 32, 1792–1797.

    Article  PubMed  CAS  Google Scholar 

  9. Wallace, I., O’Sullivan, O., Higgins, D., and Notredame, C. (2006) M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucl Acids Res, 34, 1692–1699.

    Article  PubMed  CAS  Google Scholar 

  10. Notredame, C. (2009) Computing multiple sequence alignment with template-based methods. In Rosenberg, M., (ed.), Sequence alignment: methods, models, concepts, and strategies, pp. 55–70 University of California Press Los Angeles, California.

    Google Scholar 

  11. Morrison, D. (2009) Why would phylogeneticists ignore computerized sequence alignment? Syst Biol, 58, 150–158.

    Article  PubMed  CAS  Google Scholar 

  12. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078–2079.

    Article  PubMed  Google Scholar 

  13. Lee, C. (2003) Generating consensus sequences from partial order multiple sequence alignment graphs. Bioinformatics, 19, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  14. Altenhoff, A. and Dessimoz, C. (2012) Inferring Orthology and Paralogy. In Anisimova, M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media, LLC.

    Google Scholar 

  15. Hubbard, T., Aken, B., Ayling, S., Ballester, B., Beal, K., Bragin, E., Brent, S., Chen, Y., Clapham, P., Clarke, L., et al. (2009) Ensembl 2009. Nucl Acids Res, 37, D690–697.

    Article  PubMed  CAS  Google Scholar 

  16. Dewey, C. (2012) Whole-genome alignment. In Anisimova, M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media, LLC.

    Google Scholar 

  17. Blanchette, M., Kent, J., Riemer, C., Elnitski, L., Smit, A., Roskin, K., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E., Haussler, D., and Miller, W. (2004) Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res, 14, 708–715.

    Article  PubMed  CAS  Google Scholar 

  18. Hein, J., Wiuf, C., Knudsen, B., Moller, M., and Wibling, G. (2000) Statistical alignment: computational properties, homology testing and goodness-of-fit. J Mol Biol, 302, 265–280.

    Article  PubMed  CAS  Google Scholar 

  19. Torres, A., Cabada, A., and Nieto, J. (2003) An exact formula for the number of alignments between two DNA sequences. DNA Seq, 14, 427–430.

    PubMed  CAS  Google Scholar 

  20. Covington, M. (2004) The number of distinct alignments of two strings. J Quant Linguistics, 11, 173–182.

    Article  Google Scholar 

  21. Levenshtein, V. (1966) Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys Dokl, 10, 707–710.

    Google Scholar 

  22. Needleman, S. and Wunsch, C. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol, 48, 443–453.

    Article  PubMed  CAS  Google Scholar 

  23. Sankoff, D. (1972) Matching sequences under deletion/insertion constraints. Proc Natl Acad Sci USA, 69, 4–6.

    Article  PubMed  CAS  Google Scholar 

  24. Sankoff, D. (2000) The early introduction of dynamic programming into computational biology. Bioinformatics, 16, 41–47.

    Article  PubMed  CAS  Google Scholar 

  25. Eddy, S. (2004) What is dynamic programming? Nature Biotech, 22, 909–910.

    Article  CAS  Google Scholar 

  26. Hirschberg, D. (1975) A linear space algorithm for computing maximal common subsequences. Commun ACM, 18, 341–343.

    Article  Google Scholar 

  27. Myers, E. and Miller, W. (1988) Optimal alignments in linear space. Comput Appl Biosci, 4, 11–17.

    PubMed  CAS  Google Scholar 

  28. Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998) Biological sequence analysis: Probabilistic models of proteins and nucleic acids, Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  29. Eddy, S. (2004) Where did the BLOSUM62 alignment score matrix come from? Nature Biotech, 22, 1035–1036.

    Article  CAS  Google Scholar 

  30. Thorne, J., Kishino, H., and Felsenstein, J. (1991) An evolutionary model for maximum likelihood alignment of DNA sequences. J Mol Evol, 33, 114–124.

    Article  PubMed  CAS  Google Scholar 

  31. Löytynoja, A. and Goldman, N. (2005) An algorithm for progressive multiple alignment of sequences with insertions. Proc Natl Acad Sci USA, 102, 10557–10562.

    Article  PubMed  Google Scholar 

  32. Gotoh, O. (1982) An improved algorithm for matching biological sequences. J Mol Biol, 162, 705–708.

    Article  PubMed  CAS  Google Scholar 

  33. Gu, X. and Li, W. (1995) The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. J Mol Evol, 40, 464–473.

    Article  PubMed  CAS  Google Scholar 

  34. Cartwright, R. (2006) Logarithmic gap costs decrease alignment accuracy. BMC Bioinf, 7, 527.

    Article  Google Scholar 

  35. Knudsen, B. and Miyamoto, M. (2003) Sequence alignments and pair hidden Markov models using evolutionary history. J Mol Biol, 333, 453–460.

    Article  PubMed  CAS  Google Scholar 

  36. Löytynoja, A. and Goldman, N. (2008) A model of evolution and structure for multiple sequence alignment. Phil Trans Royal Soci B: Biol Sci, 363, 3913–3919.

    Article  Google Scholar 

  37. Waterman, M. (1983) Sequence alignments in the neighborhood of the optimum with general application to dynamic programming. Proc Natl Acad Sci USA, 80, 3123–3124.

    Article  PubMed  CAS  Google Scholar 

  38. Vingron, M. (1996) Near-optimal sequence alignment. Curr Opin Struct Biol, 6, 346–352.

    Article  PubMed  CAS  Google Scholar 

  39. Landan, G. and Graur, D. (2007) Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol Evol, 24, 1380–1383.

    Article  PubMed  CAS  Google Scholar 

  40. Löytynoja, A. and Milinkovitch, M. (2001) SOAP, cleaning multiple alignments from unstable blocks. Bioinformatics, 17, 573–574.

    Article  PubMed  Google Scholar 

  41. Penn, O., Privman, E., Landan, G., Graur, D., and Pupko, T. (2010) An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol Evol, 27, 1759–1767.

    Article  PubMed  CAS  Google Scholar 

  42. Allison, L. and Wallace, C. (1994) The posterior probability distribution of alignments and its application to parameter estimation of evolutionary trees and to optimization of multiple alignments. J Mol Evol, 39, 418–430.

    Article  PubMed  CAS  Google Scholar 

  43. Bradley, R., Roberts, A., Smoot, M., Juvekar, S., Do, J., Dewey, C., Holmes, I., and Pachter, L. (2009) Fast statistical alignment. PLoS Comput Biol, 5, e1000392.

    Article  PubMed  Google Scholar 

  44. Löytynoja, A. and Goldman, N. (2010) webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinf, 11, 579.

    Article  Google Scholar 

  45. Miklós, I., Lunter, G., and Holmes, I. (2004) A “Long Indel” model for evolutionary sequence alignment. Mol Biol Evol, 21, 529–540.

    Article  PubMed  Google Scholar 

  46. Lunter, G., Rocco, A., Mimouni, N., Heger, A., Caldeira, A., and Hein, J. (2008) Uncertainty in homology inferences: assessing and improving genomic sequence alignment. Genome Res, 18, 298–309.

    Article  PubMed  CAS  Google Scholar 

  47. Lunter, G., Miklós, I., Drummond, A., Jensen, J., and Hein, J. (2005) Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinf, 6, 83.

    Article  Google Scholar 

  48. Satija, R., Pachter, L., and Hein, J. (2008) Combining statistical alignment and phylogenetic footprinting to detect regulatory elements. Bioinformatics, 24, 1236–1242.

    Article  PubMed  CAS  Google Scholar 

  49. Redelings, B. and Suchard, M. (2005) Joint Bayesian estimation of alignment and phylogeny. Syst Biol, 54, 401–418.

    Article  PubMed  Google Scholar 

  50. Sankoff, D. (1975) Minimal mutation trees of sequences. SIAM J Appl Math, 28, 35–42.

    Article  Google Scholar 

  51. Hogeweg, P. and Hesper, B. (1984) The alignment of sets of sequences and the construction of phyletic trees: an integrated method. J Mol Evol, 20, 175–186.

    Article  PubMed  CAS  Google Scholar 

  52. Wheeler, W. and Gladstein, D. (1994) MALIGN: a multiple sequence alignment program. J Heredity, 85, 417.

    Google Scholar 

  53. Gonnet, G. and Benner, S. (1996) In SWAT ’96: Proceedings of the 5th Scandinavian Workshop on Algorithm Theory pp. 380–391, Springer-Verlag.

    Google Scholar 

  54. Hudek, A. and Brown, D. (2005) Ancestral sequence alignment under optimal conditions. BMC Bioinf, 6, 273.

    Article  Google Scholar 

  55. Löytynoja, A. and Goldman, N. (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science, 320, 1632–1635.

    Article  PubMed  Google Scholar 

  56. Notredame, C., Holm, L., and Higgins, D. (1998) COFFEE: an objective function for multiple sequence alignments. Bioinformatics, 14, 407–422.

    Article  PubMed  CAS  Google Scholar 

  57. Notredame, C., Higgins, D., and Heringa, J. (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol, 302, 205–217.

    Article  PubMed  CAS  Google Scholar 

  58. Do, C., Mahabhashyam, M., Brudno, M., and Batzoglou, S. (2005) ProbCons: Probabilistic consistency-based multiple sequence alignment. Genome Res, 15, 330–340.

    Article  PubMed  CAS  Google Scholar 

  59. Paten, B., Herrero, J., Beal, K., Fitzgerald, S., and Birney, E. (2008) Enredo and Pecan: Genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Res, 18, 1814–1824.

    Article  PubMed  CAS  Google Scholar 

  60. Berger, M. and Munson, P. (1991) A novel randomized iterative strategy for aligning multiple protein sequences. Comput Appl Biosci, 7, 479–484.

    PubMed  CAS  Google Scholar 

  61. Gotoh, O. (1993) Optimal alignment between groups of sequences and its application to multiple sequence alignment. Comput Appl Biosci, 9, 361–370.

    PubMed  CAS  Google Scholar 

  62. Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4, 406–425.

    PubMed  CAS  Google Scholar 

  63. Kumar, S. and Filipski, A. (2007) Multiple sequence alignment: in pursuit of homologous DNA positions. Genome Res, 17, 127–135.

    Article  PubMed  CAS  Google Scholar 

  64. Suchard, M. and Redelings, B. (2006) BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics, 22, 2047–2048.

    Article  PubMed  CAS  Google Scholar 

  65. Novák, A., Miklós, I., Lyngsø, R., and Hein, J. (2008) StatAlign: an extendable software package for joint Bayesian estimation of alignments and evolutionary trees. Bioinformatics, 24, 2403–2404.

    Article  PubMed  Google Scholar 

  66. Liu, K., Raghavan, S., Nelesen, S., Linder, C., and Warnow, T. (2009) Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science, 324, 1561–1564.

    Article  PubMed  CAS  Google Scholar 

  67. Löytynoja, A. and Goldman, N. (2009) Uniting alignments and trees. Science, 324, 1528–1529.

    Article  PubMed  Google Scholar 

  68. Fletcher, W. and Yang, Z. (2010) The effect of insertions, deletions and alignment errors on the branch-site test of positive selection. Mol Biol Evol, 27, 2257–2267.

    Article  PubMed  CAS  Google Scholar 

  69. Morgenstern, B., Frech, K., Dress, A., and Werner, T. (1998) DIALIGN: finding local similarities by multiple sequence alignment. Bioinformatics, 14, 290–294.

    Article  PubMed  CAS  Google Scholar 

  70. Schwartz, A. and Pachter, L. (2007) Multiple alignment by sequence annealing. Bioinformatics, 23, 24–29.

    Article  Google Scholar 

  71. Kim, J. and Sinha, S. (2007) Indelign: a probabilistic framework for annotation of insertions and deletions in a multiple alignment. Bioinformatics, 23, 289–297.

    Article  PubMed  CAS  Google Scholar 

  72. Paten, B., Herrero, J., Fitzgerald, S., Beal, K., Flicek, P., Holmes, I., and Birney, E. (2008) Genome-wide nucleotide-level mammalian ancestor reconstruction. Genome Res, 18, 1829.

    Article  PubMed  CAS  Google Scholar 

  73. Thompson, J., Plewniak, F., and Poch, O. (1999) A comprehensive comparison of multiple sequence alignment programs. Nucl Acids Res, 27, 2682–2690.

    Article  PubMed  CAS  Google Scholar 

  74. Rosenberg, M. (2005) Evolutionary distance estimation and fidelity of pair wise sequence alignment. BMC Bioinf, 6, 102.

    Article  Google Scholar 

  75. Ogden, T. and Rosenberg, M. (2006) Multiple sequence alignment accuracy and phylogenetic inference. Syst Biol, 55, 314–328.

    Article  Google Scholar 

  76. Dessimoz, C. and Gil, M. (2010) Phylogenetic assessment of alignments reveals neglected tree signal in gaps. Genome Biol, 11, R37.

    Article  PubMed  Google Scholar 

  77. Cartwright, R. (2005) DNA assembly with gaps (Dawg): simulating sequence evolution. Bioinformatics, 21 S3, 31–38.

    Google Scholar 

  78. Fletcher, W. and Yang, Z. (2009) INDELible: a flexible simulator of biological sequence evolution. Mol Biol Evol, 26, 1879–1888.

    Article  PubMed  CAS  Google Scholar 

  79. Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res, 30, 3059–3066.

    Article  PubMed  CAS  Google Scholar 

  80. Grasso, C. and Lee, C. (2004) Combining partial order alignment and progressive multiple sequence alignment increases alignment speed and scalability to very large alignment problems. Bioinformatics, 20, 1546–1556.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Löytynoja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Löytynoja, A. (2012). Alignment Methods: Strategies, Challenges, Benchmarking, and Comparative Overview. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 855. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-582-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-582-4_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-581-7

  • Online ISBN: 978-1-61779-582-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics