Skip to main content

Diversity of Genome Organisation

  • Protocol
  • First Online:
Evolutionary Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 855))

Abstract

Genomes can be organised in different ways. Understanding the extent of the diversity of genome organisation, the processes that create it, and its consequences is particularly important for two key reasons. Firstly, it is relevant for our understanding of the genetic basis for the astounding diversity of life on Earth. Elucidating the mechanisms and processes underlying such diversity has been, and remains, one of the central goals of biological research. Secondly, it helps prepare us for our analysis of new genomes. For example, knowing that plasmids can be circular or linear, we know to check for circularity or linearity in a plasmid we encounter for the first time (if this is relevant for our analysis). This article provides an overview of variation and diversity in several aspects of genome organisation and architecture, including the number, size, ploidy, composition (RNA or DNA), packaging, and topology of the molecules encoding the genome. Additionally, it reviews differences in selected genomic features, i.e. telomeres, centromeres, DNA replication origins, and sex chromosomes. To put this in context, it incorporates a brief survey of organism diversity and the tree of life, and ends with a discussion of mutation mechanisms and inheritance, and explanations of key terms used to describe genomic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kondrashov AS (1997) Evolutionary genetics of life cycles Annu Rev Ecol Evol Syst 28:391435

    Article  Google Scholar 

  2. Parfrey LW, Lahr DJ, Katz LA (2008) The dynamic nature of eukaryotic genomes. Mol Biol Evol 25:787794

    Article  PubMed  CAS  Google Scholar 

  3. Budd, A. (2012) Introduction to genome biology: features, processes, structures. In Anisimova M., (ed.), Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business media, LLC

    Google Scholar 

  4. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203217

    Article  PubMed  CAS  Google Scholar 

  5. Bolker JA (1995) Model systems in developmental biology. Bioessays 17:451455

    Article  PubMed  CAS  Google Scholar 

  6. Hughes CL, Kaufman TC (2000) A diverse approach to arthropod development. Evol Dev 2:68

    Article  PubMed  CAS  Google Scholar 

  7. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882891

    Article  PubMed  CAS  Google Scholar 

  8. Moreno Diaz de la Espina S, Alverca E, Cuadrado A, Franca S (2005) Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur J Cell Biol 84:137149

    Article  CAS  Google Scholar 

  9. Rizzo PJ (1985) Histones in protistan evolution. Biosystems 18:249262

    Article  PubMed  CAS  Google Scholar 

  10. Casjens S (1999) Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr Opin Microbiol 2:529534

    Article  PubMed  CAS  Google Scholar 

  11. Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40:123

    Article  PubMed  CAS  Google Scholar 

  12. Nosek J, Tomaska L (2003) Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr Genet 44:7384

    Article  PubMed  CAS  Google Scholar 

  13. Kay A, Zoulim F (2007) Hepatitis B virus genetic variability and evolution. Virus Res 127:164176

    Article  PubMed  CAS  Google Scholar 

  14. Archibald JM, Lane CE (2009) Going, going, not quite gone: nucleomorphs as a case study in nuclear genome reduction. J Hered 100:582590

    Article  PubMed  CAS  Google Scholar 

  15. Valach M, Farkas Z, Fricova D, Kovac J, Brejova B, Vinar T, Pfeiffer I, Kucsera J, Tomaska L, Lang BF, Nosek J (2011) Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 39:4202–4219

    Google Scholar 

  16. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3:838849

    Article  PubMed  CAS  Google Scholar 

  17. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73:565576

    Article  PubMed  CAS  Google Scholar 

  18. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337365

    Article  PubMed  CAS  Google Scholar 

  19. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221271

    PubMed  CAS  Google Scholar 

  20. Brown JR, Douady CJ, Italia MJ, Marshall WE, Stanhope MJ (2001) Universal trees based on large combined protein sequence data sets. Nat Genet 28:281285

    Article  PubMed  CAS  Google Scholar 

  21. Korbel JO, Snel B, Huynen MA, Bork P (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet 18:158162

    Article  PubMed  CAS  Google Scholar 

  22. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:21242129

    Article  PubMed  CAS  Google Scholar 

  23. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254267

    Article  PubMed  CAS  Google Scholar 

  24. Swithers KS, Gogarten JP, Fournier GP (2009) Trees in the web of life. J Biol 8:54

    Article  PubMed  CAS  Google Scholar 

  25. Paz-Y-Mino CG, Espinosa A (2010) Integrating horizontal gene transfer and common descent to depict evolution and contrast it with “common design”. J Eukaryot Microbiol 57:1118

    Article  CAS  Google Scholar 

  26. Soria-Carrasco V, Castresana J (2008) Estimation of phylogenetic inconsistencies in the three domains of life. Mol Biol Evol 25:23192329

    Article  PubMed  CAS  Google Scholar 

  27. Burleigh JG, Bansal MS, Eulenstein O, Hartmann S, Wehe A, Vision TJ (2010) Genome-scale phylogenetics: inferring the plant tree of life from 18,896 Gene Trees. Syst Biol 60:117–125

    Google Scholar 

  28. Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361375

    Article  PubMed  CAS  Google Scholar 

  29. Ding G, Yu Z, Zhao J, Wang Z, Li Y, Xing X, Wang C, Liu L, Li Y (2008) Tree of life based on genome context networks. PLoS One 3:e3357

    Article  PubMed  CAS  Google Scholar 

  30. Fukami-Kobayashi K, Minezaki Y, Tateno Y, Nishikawa K (2007) A tree of life based on protein domain organizations. Mol Biol Evol 24:11811189

    Article  PubMed  CAS  Google Scholar 

  31. Cavalier-Smith T (2006) Rooting the tree of life by transition analyses. Biol Direct 1:19

    Article  PubMed  CAS  Google Scholar 

  32. Dagan T, Roettger M, Bryant D, Martin W (2010) Genome networks root the tree of life between prokaryotic domains. Genome Biol Evol 2:379392

    Article  PubMed  CAS  Google Scholar 

  33. Di Giulio M (2007) The evidence that the tree of life is not rooted within the Archaea is unreliable: a reply to Skophammer et al. Gene 394:105106

    Article  PubMed  CAS  Google Scholar 

  34. Di Giulio M (2007) The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene 401:108113

    Article  PubMed  CAS  Google Scholar 

  35. Fournier GP, Gogarten JP (2010) Rooting the ribosomal tree of life. Mol Biol Evol 27:17921801

    Article  PubMed  CAS  Google Scholar 

  36. Lake JA, Herbold CW, Rivera MC, Servin JA, Skophammer RG (2007) Rooting the tree of life using nonubiquitous genes. Mol Biol Evol 24:130136

    Article  PubMed  CAS  Google Scholar 

  37. Lake JA, Servin JA, Herbold CW, Skophammer RG (2008) Evidence for a new root of the tree of life. Syst Biol 57:835843

    Article  PubMed  CAS  Google Scholar 

  38. Servin JA, Herbold CW, Skophammer RG, Lake JA (2008) Evidence excluding the root of the tree of life from the actinobacteria. Mol Biol Evol 25:14

    Article  PubMed  CAS  Google Scholar 

  39. Skophammer RG, Herbold CW, Rivera MC, Servin JA, Lake JA (2006) Evidence that the root of the tree of life is not within the Archaea. Mol Biol Evol 23:16481651

    Article  PubMed  CAS  Google Scholar 

  40. Skophammer RG, Servin JA, Herbold CW, Lake JA (2007) Evidence for a gram-positive, eubacterial root of the tree of life. Mol Biol Evol 24:17611768

    Article  PubMed  CAS  Google Scholar 

  41. Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:17131731

    Article  PubMed  CAS  Google Scholar 

  42. Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686727

    Article  PubMed  CAS  Google Scholar 

  43. Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99:83248329

    Article  PubMed  CAS  Google Scholar 

  44. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV (2010) New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:1119

    Article  PubMed  CAS  Google Scholar 

  45. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669685

    Article  PubMed  CAS  Google Scholar 

  46. Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667

    Article  PubMed  CAS  Google Scholar 

  47. Benner SA, Ricardo A, Carrigan MA (2004) Is there a common chemical model for life in the universe? Curr Opin Chem Biol 8:672689

    Article  PubMed  CAS  Google Scholar 

  48. Forterre P (2010) Defining life: the virus viewpoint. Orig Life Evol Biosph 40:151160

    Article  PubMed  Google Scholar 

  49. Koshland DEJ (2002) Special essay. The seven pillars of life. Science 295:22152216

    CAS  Google Scholar 

  50. McKay CP (2004) What is life – and how do we search for it in other worlds? PLoS Biol 2:E302

    Article  PubMed  CAS  Google Scholar 

  51. Claverie JM, Abergel C (2009) Mimivirus and its virophage. Annu Rev Genet 43:4966

    Article  PubMed  CAS  Google Scholar 

  52. Finsterbusch T, Mankertz A (2009) Porcine circoviruses – small but powerful. Virus Res 143:177183

    Article  PubMed  CAS  Google Scholar 

  53. Trifonov V, Khiabanian H, Rabadan R (2009) Geographic dependence, surveillance, and origins of the 2009 influenza A (H1N1) virus. N Engl J Med 361:115119

    Article  PubMed  CAS  Google Scholar 

  54. Hartlieb B, Weissenhorn W (2006) Filovirus assembly and budding. Virology 344:6470

    Article  PubMed  CAS  Google Scholar 

  55. Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647681

    Article  PubMed  CAS  Google Scholar 

  56. Sun S, Rao VB, Rossmann MG (2010) Genome packaging in viruses. Curr Opin Struct Biol 20:114120

    Article  PubMed  CAS  Google Scholar 

  57. Koonin EV, Senkevich TG, Dolja VV (2006) The ancient Virus World and evolution of cells. Biol Direct 1:29

    Article  PubMed  CAS  Google Scholar 

  58. Lawrence CM, Menon S, Eilers BJ, Bothner B, Khayat R, Douglas T, Young MJ (2009) Structural and functional studies of archaeal viruses. J Biol Chem 284:1259912603

    Article  PubMed  CAS  Google Scholar 

  59. Suttle CA (2007) Marine viruses – major players in the global ecosystem. Nat Rev Microbiol 5:801812

    Article  PubMed  CAS  Google Scholar 

  60. Swiss Institute of Bioinformatics, ViralZone. http://www.expasy.org/viralzone/all_by_protein/230.html

  61. Schulz HN, Jorgensen BB (2001) Big bacteria. Annu Rev Microbiol 55:105137

    Article  PubMed  CAS  Google Scholar 

  62. West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:15751592

    Article  PubMed  Google Scholar 

  63. Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70:660703

    Article  PubMed  Google Scholar 

  64. Martindale MQ (2005) The evolution of metazoan axial properties. Nat Rev Genet 6:917927

    Article  PubMed  CAS  Google Scholar 

  65. de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V, Church GM (2009) The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell 8:6572

    Article  PubMed  CAS  Google Scholar 

  66. Ksiazek K (2010) Bacterial aging: from mechanistic basis to evolutionary perspective. Cell Mol Life Sci 67:31313137

    Article  PubMed  CAS  Google Scholar 

  67. Minelli A, Fusco G (2010) Developmental plasticity and the evolution of animal complex life cycles. Philos Trans R Soc Lond B Biol Sci 365:631640

    Article  PubMed  Google Scholar 

  68. Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:11021109

    Article  PubMed  CAS  Google Scholar 

  69. Morozkina EV, Slutskaia ES, Fedorova TV, Tugai TI, Golubeva LI, Koroleva OV (2010) [Extremophilic microorganisms: biochemical adaptation and biotechnological application (review)] Prikl Biokhim Mikrobiol 46:520

    Google Scholar 

  70. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:10921101

    Article  PubMed  CAS  Google Scholar 

  71. History of life through time UCMP. http://www.ucmp.berkeley.edu/exhibits/historyoflife.php

  72. The Tree of Life Web Project. http://tolweb.org

  73. The Encyclopedia of Life. http://eol.org

  74. Oren A (2004) Prokaryote diversity and taxonomy: current status and future challenges. Philos Trans R Soc Lond B Biol Sci 359:623638

    Article  PubMed  CAS  Google Scholar 

  75. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:65786583

    Article  PubMed  CAS  Google Scholar 

  76. Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722732

    Article  PubMed  CAS  Google Scholar 

  77. Koch AL (1996) What size should a bacterium be? A question of scale. Annu Rev Microbiol 50:317348

    Article  PubMed  CAS  Google Scholar 

  78. Margolin W (2009) Sculpting the bacterial cell. Curr Biol 19:R812-22

    Article  PubMed  CAS  Google Scholar 

  79. Angert ER (2005) Alternatives to binary fission in bacteria. Nat Rev Microbiol 3:214224

    Article  PubMed  CAS  Google Scholar 

  80. Rosenberg SM (2009) Life, death, differentiation, and the multicellularity of bacteria. PLoS Genet 5:e1000418

    Article  PubMed  CAS  Google Scholar 

  81. Bonner JT (1998) The origins of multicellularity Integ Bio 1:2736

    Article  Google Scholar 

  82. Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235251

    Article  PubMed  CAS  Google Scholar 

  83. Flardh K, Buttner MJ (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:3649

    Article  PubMed  CAS  Google Scholar 

  84. Flores E, Herrero A (2010) Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:3950

    Article  PubMed  CAS  Google Scholar 

  85. Kroos L (2007) The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 41:1339

    Article  PubMed  CAS  Google Scholar 

  86. Allers T, Mevarech M (2005) Archaeal genetics – the third way. Nat Rev Genet 6:5873

    Article  PubMed  CAS  Google Scholar 

  87. Olsen GJ, Woese CR (1997) Archaeal genomics: an overview. Cell 89:991994

    Article  PubMed  CAS  Google Scholar 

  88. Fuerst JA, Webb RI (1991) Membrane-bounded nucleoid in the eubacterium Gemmatata obscuriglobus. Proc Natl Acad Sci U S A 88:81848188

    Article  PubMed  CAS  Google Scholar 

  89. Fuerst JA (2005) Intracellular compartmentation in planctomycetes. Annu Rev Microbiol 59:299328

    Article  PubMed  CAS  Google Scholar 

  90. Gowrishankar J, Harinarayanan R (2004) Why is transcription coupled to translation in bacteria? Mol Microbiol 54:598603

    Article  PubMed  CAS  Google Scholar 

  91. Zimmerman SB (2006) Shape and compaction of Escherichia coli nucleoids. J Struct Biol 156:255261

    Article  PubMed  CAS  Google Scholar 

  92. Hinnebusch BJ, Bendich AJ (1997) The bacterial nucleoid visualized by fluorescence microscopy of cells lysed within agarose: comparison of Escherichia coli and spirochetes of the genus Borrelia. J Bacteriol 179:22282237

    PubMed  CAS  Google Scholar 

  93. Egan ES, Fogel MA, Waldor MK (2005) Divided genomes: negotiating the cell cycle in prokaryotes with multiple chromosomes. Mol Microbiol 56:11291138

    Article  PubMed  CAS  Google Scholar 

  94. Rocha EP (2008) The organization of the bacterial genome. Annu Rev Genet 42:211233

    Article  PubMed  CAS  Google Scholar 

  95. Chaconas G (2005) Hairpin telomeres and genome plasticity in Borrelia: all mixed up in the end. Mol Microbiol 58:625635

    Article  PubMed  CAS  Google Scholar 

  96. Langston LD, O’Donnell M (2006) DNA replication: keep moving and don’t mind the gap. Mol Cell 23:155160

    Article  PubMed  CAS  Google Scholar 

  97. Kanaar R, Wyman C, Rothstein R (2008) Quality control of DNA break metabolism: in the ‘end’, it’s a good thing. EMBO J 27:581588

    Article  PubMed  CAS  Google Scholar 

  98. Luijsterburg MS, White MF, van Driel R, Dame RT (2008) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43:393418

    Article  PubMed  CAS  Google Scholar 

  99. Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185195

    Article  PubMed  CAS  Google Scholar 

  100. Laub MT, Shapiro L, McAdams HH (2007) Systems biology of Caulobacter. Annu Rev Genet 41:429441

    Article  PubMed  CAS  Google Scholar 

  101. Haeusser DP, Levin PA (2008) The great divide: coordinating cell cycle events during bacterial growth and division. Curr Opin Microbiol 11:9499

    Article  PubMed  CAS  Google Scholar 

  102. Thanbichler M (2010) Synchronization of chromosome dynamics and cell division in bacteria. Cold Spring Harb Perspect Biol 2:a000331

    Article  PubMed  CAS  Google Scholar 

  103. Brown PJ, Hardy GG, Trimble MJ, Brun YV (2009) Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 54:1101

    Article  PubMed  CAS  Google Scholar 

  104. Sandman K, Pereira SL, Reeve JN (1998) Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome. Cell Mol Life Sci 54:13501364

    Article  PubMed  CAS  Google Scholar 

  105. Lee KC, Webb RI, Fuerst JA (2009) The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization. BMC Cell Biol 10:4

    Article  PubMed  CAS  Google Scholar 

  106. Bernander R, Lundgren M, Ettema TJ (2010) Comparative and functional analysis of the archaeal cell cycle. Cell Cycle 9:794806

    Article  PubMed  Google Scholar 

  107. Lundgren M, Malandrin L, Eriksson S, Huber H, Bernander R (2008) Cell cycle characteristics of crenarchaeota: unity among diversity. J Bacteriol 190:53625367

    Article  PubMed  CAS  Google Scholar 

  108. Coelho SM, Peters AF, Charrier B, Roze D, Destombe C, Valero M, Cock JM (2007) Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:152170

    Article  PubMed  CAS  Google Scholar 

  109. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MF (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399451

    Article  PubMed  Google Scholar 

  110. Mathur J (2004) Cell shape development in plants. Trends Plant Sci 9:583590

    Article  PubMed  CAS  Google Scholar 

  111. Mogilner A, Keren K (2009) The shape of motile cells. Curr Biol 19:R762-71

    Article  PubMed  CAS  Google Scholar 

  112. Bornens M (2008) Organelle positioning and cell polarity. Nat Rev Mol Cell Biol 9:874886

    Article  PubMed  CAS  Google Scholar 

  113. Fagarasanu A, Rachubinski RA (2007) Orchestrating organelle inheritance in Saccharomyces cerevisiae. Curr Opin Microbiol 10:528538

    Article  PubMed  CAS  Google Scholar 

  114. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253257

    Article  PubMed  CAS  Google Scholar 

  115. Horiike T, Hamada K, Kanaya S, Shinozawa T (2001) Origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol 3:210214

    Article  PubMed  CAS  Google Scholar 

  116. Jekely G (2005) Glimpsing over the event horizon: evolution of nuclear pores and envelope. Cell Cycle 4:297299

    Article  PubMed  CAS  Google Scholar 

  117. Lopez-Garcia P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. Bioessays 28:525533

    Article  PubMed  CAS  Google Scholar 

  118. Martin W (2005) Archaebacteria (Archaea) and the origin of the eukaryotic nucleus. Curr Opin Microbiol 8:630637

    Article  PubMed  CAS  Google Scholar 

  119. Pennisi E (2004) Evolutionary biology. The birth of the nucleus. Science 305:766768

    CAS  Google Scholar 

  120. Poole A, Penny D (2001) Does endo-symbiosis explain the origin of the nucleus? Nat Cell Biol 3:E173-4

    Article  PubMed  CAS  Google Scholar 

  121. Rotte C, Martin W (2001) Does endo-symbiosis explain the origin of the nucleus? Nat Cell Biol 3:E173-4

    Article  PubMed  CAS  Google Scholar 

  122. Zimmer C (2009) Origins. On the origin of eukaryotes. Science 325:666668

    CAS  Google Scholar 

  123. Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:30273043

    Article  PubMed  CAS  Google Scholar 

  124. Trinkle-Mulcahy L, Lamond AI (2007) Toward a high-resolution view of nuclear dynamics. Science 318:14021407

    Article  PubMed  CAS  Google Scholar 

  125. Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:14771486

    Article  PubMed  CAS  Google Scholar 

  126. Mekhail K, Moazed D (2010) The nuclear envelope in genome organization, expression and stability. Nat Rev Mol Cell Biol 11:317328

    Article  PubMed  CAS  Google Scholar 

  127. Anderson DJ, Hetzer MW (2008) The life cycle of the metazoan nuclear envelope. Curr Opin Cell Biol 20:386392

    Article  PubMed  CAS  Google Scholar 

  128. Guttinger S, Laurell E, Kutay U (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 10:178191

    Article  PubMed  CAS  Google Scholar 

  129. Larijani B, Poccia DL (2009) Nuclear envelope formation: mind the gaps. Annu Rev Biophys 38:107124

    Article  PubMed  CAS  Google Scholar 

  130. De Souza CP, Osmani SA (2009) Double duty for nuclear proteins – the price of more open forms of mitosis. Trends Genet 25:545554

    Article  PubMed  CAS  Google Scholar 

  131. O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171181

    Article  PubMed  Google Scholar 

  132. Fajkus J, Sykorova E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469479

    Article  PubMed  CAS  Google Scholar 

  133. Teixeira MT, Gilson E (2005) Telomere maintenance, function and evolution: the yeast paradigm. Chromosome Res 13:535548

    Article  PubMed  CAS  Google Scholar 

  134. Goldstein ST (1997) Gametogenesis and the antiquity of reproductive pattern in the Foraminiferida. J Foramniferal Res 27:319328

    Article  Google Scholar 

  135. Mazumdar A, Mazumdar M (2002) How one becomes many: blastoderm cellularization in Drosophila melanogaster. Bioessays 24:10121022

    Article  PubMed  CAS  Google Scholar 

  136. Cooper MS, Virta VC (2007) Evolution of gastrulation in the ray-finned (actinopterygian) fishes. J Exp Zool B Mol Dev Evol 308:591608

    Article  PubMed  Google Scholar 

  137. Rohde LA, Heisenberg CP (2007) Zebrafish gastrulation: cell movements, signals, and mechanisms. Int Rev Cytol 261:159192

    Article  PubMed  CAS  Google Scholar 

  138. Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19:514522

    Article  PubMed  CAS  Google Scholar 

  139. Baluska F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: Cell Theory revised. Ann Bot 94:932

    Article  PubMed  CAS  Google Scholar 

  140. Chasis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112:470478

    Article  PubMed  CAS  Google Scholar 

  141. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:10631072

    Article  PubMed  Google Scholar 

  142. Otto SP, Gerstein AC (2008) The evolution of haploidy and diploidy. Curr Biol 18:R1121-4

    Article  PubMed  CAS  Google Scholar 

  143. Zhimulev IF, Belyaeva ES, Semeshin VF, Koryakov DE, Demakov SA, Demakova OV, Pokholkova GV, Andreyeva EN (2004) Polytene chromosomes: 70 years of genetic research. Int Rev Cytol 241:203275

    Article  PubMed  CAS  Google Scholar 

  144. Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491517

    Article  PubMed  CAS  Google Scholar 

  145. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365:729748

    Article  PubMed  CAS  Google Scholar 

  146. Moore CE, Archibald JM (2009) Nucleomorph genomes. Annu Rev Genet 43:251264

    Article  PubMed  CAS  Google Scholar 

  147. Chalker DL (2008) Dynamic nuclear reorganization during genome remodeling of Tetrahymena. Biochim Biophys Acta 1783:21302136

    Article  PubMed  CAS  Google Scholar 

  148. Valenzuela N (2009) Co-evolution of genomic structure and selective forces underlying sexual development and reproduction. Cytogenet Genome Res 127:232241

    Article  PubMed  CAS  Google Scholar 

  149. Wilson MA, Makova KD (2009) Genomic analyses of sex chromosome evolution. Annu Rev Genomics Hum Genet 10:333354

    Article  PubMed  CAS  Google Scholar 

  150. Przewloka MR, Glover DM (2009) The kinetochore and the centromere: a working long distance relationship. Annu Rev Genet 43:439465

    Article  PubMed  CAS  Google Scholar 

  151. Buscaino A, Allshire R, Pidoux A (2010) Building centromeres: home sweet home or a nomadic existence? Curr Opin Genet Dev 20:118126

    Article  PubMed  CAS  Google Scholar 

  152. Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol 153:F33-8

    Article  PubMed  CAS  Google Scholar 

  153. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460:831838

    Article  PubMed  CAS  Google Scholar 

  154. Logan DC (2006) The mitochondrial compartment. J Exp Bot 57:12251243

    Article  PubMed  CAS  Google Scholar 

  155. Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 365:713727

    Article  PubMed  CAS  Google Scholar 

  156. van der Giezen M, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175225

    Article  PubMed  Google Scholar 

  157. Shoubridge EA, Wai T (2007) Mitochondrial DNA and the mammalian oocyte. Curr Top Dev Biol 77:87111

    Article  PubMed  CAS  Google Scholar 

  158. Smith DR, Hua J, Lee RW (2010) Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Curr Genet 56:427438

    Article  PubMed  CAS  Google Scholar 

  159. Barbrook AC, Howe CJ, Kurniawan DP, Tarr SJ (2010) Organization and expression of organellar genomes. Philos Trans R Soc Lond B Biol Sci 365:785797

    Article  PubMed  CAS  Google Scholar 

  160. Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes. Trends Genet 19:709716

    Article  PubMed  CAS  Google Scholar 

  161. Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477524

    Article  PubMed  CAS  Google Scholar 

  162. Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:17271730

    Article  PubMed  CAS  Google Scholar 

  163. Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237245

    Article  PubMed  CAS  Google Scholar 

  164. Kucej M, Butow RA (2007) Evolutionary tinkering with mitochondrial nucleoids. Trends Cell Biol 17:586592

    Article  PubMed  CAS  Google Scholar 

  165. Sakai A, Takano H, Kuroiwa T (2004) Organelle nuclei in higher plants: structure, composition, function, and evolution. Int Rev Cytol 238:59118

    Article  PubMed  CAS  Google Scholar 

  166. Spelbrink JN (2010) Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 62:1932

    PubMed  CAS  Google Scholar 

  167. Xu J (2005) The inheritance of organelle genes and genomes: patterns and mechanisms. Genome 48:951958

    Article  PubMed  Google Scholar 

  168. Breton S, Beaupre HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn’t one enough? Trends Genet 23:465474

    Article  PubMed  CAS  Google Scholar 

  169. Barr CM, Neiman M, Taylor DR (2005) Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:3950

    Article  PubMed  CAS  Google Scholar 

  170. Miyamura S (2010) Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type. J Plant Res 123:171184

    Article  PubMed  Google Scholar 

  171. Takano H, Onoue K, Kawano S (2010) Mitochondrial fusion and inheritance of the mitochondrial genome. J Plant Res 123:131138

    Article  PubMed  CAS  Google Scholar 

  172. White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17:49254942

    Article  PubMed  CAS  Google Scholar 

  173. Woloszynska M (2010) Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes – though this be madness, yet there’s method in’t. J Exp Bot 61:657671

    Article  PubMed  CAS  Google Scholar 

  174. Aldridge C, Maple J, Moller SG (2005) The molecular biology of plastid division in higher plants. J Exp Bot 56:10611077

    Article  PubMed  CAS  Google Scholar 

  175. Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557577

    Article  PubMed  CAS  Google Scholar 

  176. Maple J, Moller SG (2007) Plastid division coordination across a double-membraned structure. FEBS Lett 581:21622167

    Article  PubMed  CAS  Google Scholar 

  177. Natesan SK, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56:787797

    Article  PubMed  CAS  Google Scholar 

  178. Lopez-Juez E (2007) Plastid biogenesis, between light and shadows. J Exp Bot 58:1126

    Article  PubMed  CAS  Google Scholar 

  179. Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101108

    Article  PubMed  CAS  Google Scholar 

  180. Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:16611666

    Article  PubMed  CAS  Google Scholar 

  181. Howe CJ, Nisbet RE, Barbrook AC (2008) The remarkable chloroplast genome of dinoflagellates. J Exp Bot 59:10351045

    Article  PubMed  CAS  Google Scholar 

  182. Sato N, Terasawa K, Miyajima K, Kabeya Y (2003) Organization, developmental dynamics, and evolution of plastid nucleoids. Int Rev Cytol 232:217262

    Article  PubMed  CAS  Google Scholar 

  183. Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279:1689516898

    Article  PubMed  CAS  Google Scholar 

  184. Luch A (2005) Nature and nurture – lessons from chemical carcinogenesis. Nat Rev Cancer 5:113125

    Article  PubMed  CAS  Google Scholar 

  185. De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19:169185

    Article  PubMed  Google Scholar 

  186. Clancy S (2008) Genetic recombination. Nature Education 1:A

    Google Scholar 

  187. Goodier JL, Kazazian HHJ (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:2335

    Article  PubMed  CAS  Google Scholar 

  188. O’Connor C (2008) Human chromosome translocations and cancer. Nature Education 1:A

    Google Scholar 

  189. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711721

    Article  PubMed  CAS  Google Scholar 

  190. King RW (2008) When 2 + 2 = 5: the origins and fates of aneuploid and tetraploid cells. Biochim Biophys Acta 1786:414

    PubMed  CAS  Google Scholar 

  191. McCulloch SD, Kunkel TA (2008) The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18:148161

    Article  PubMed  CAS  Google Scholar 

  192. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297308

    Article  PubMed  CAS  Google Scholar 

  193. Hakem R (2008) DNA-damage repair; the good, the bad, and the ugly. EMBO J 27:589605

    Article  PubMed  CAS  Google Scholar 

  194. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440450

    Article  PubMed  CAS  Google Scholar 

  195. Eyre-Walker A, Keightley PD (2007) The distribution of fitness effects of new mutations. Nat Rev Genet 8:610618

    Article  PubMed  CAS  Google Scholar 

  196. Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:4759

    Article  PubMed  CAS  Google Scholar 

  197. Graur D, Li W-H. (2000) Genes, genetic codes, and mutation, in fundamentals of molecular evolution pp 5–38, Sinauer

    Google Scholar 

  198. Frank AC, Lobry JR (1999) Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238:6577

    Article  PubMed  CAS  Google Scholar 

  199. Mugal CF, von Grunberg HH, Peifer M (2009) Transcription-induced mutational strand bias and its effect on substitution rates in human genes. Mol Biol Evol 26:131142

    Article  PubMed  CAS  Google Scholar 

  200. Posada D, Crandall KA, Holmes EC (2002) Recombination in evolutionary genomics. Annu Rev Genet 36:7597

    Article  PubMed  CAS  Google Scholar 

  201. Gregory TR (2004) Insertion-deletion biases and the evolution of genome size. Gene 324:1534

    Article  PubMed  CAS  Google Scholar 

  202. Kirkpatrick M (2010) How and why chromosome inversions evolve. PLoS Biol 8

    Google Scholar 

  203. Kondrashov FA, Kondrashov AS (2010) Measurements of spontaneous rates of mutations in the recent past and the near future. Philos Trans R Soc Lond B Biol Sci 365:11691176

    Article  PubMed  Google Scholar 

  204. Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267276

    Article  PubMed  CAS  Google Scholar 

  205. Baer CF, Miyamoto MM, Denver DR (2007) Mutation rate variation in multicellular eukaryotes: causes and consequences. Nat Rev Genet 8:619631

    Article  PubMed  CAS  Google Scholar 

  206. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164:1015

    Article  Google Scholar 

  207. Nakabach A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

    Google Scholar 

  208. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:14011404

    Article  PubMed  CAS  Google Scholar 

  209. Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195205

    Article  PubMed  CAS  Google Scholar 

  210. Whitney KD, Garland TJ (2010) Did genetic drift drive increases in genome complexity? PLoS Genet 6

    Google Scholar 

  211. Gregory TR (2005) Synergy between sequence and size in large-scale genomics. Nat Rev Genet 6:699708

    Article  PubMed  CAS  Google Scholar 

  212. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719724

    Article  PubMed  CAS  Google Scholar 

  213. Manolio TA (2009) Collaborative genome-wide association studies of diverse diseases: programs of the NHGRI’s office of population genomics. Pharmacogenomics 10:235241

    Article  PubMed  Google Scholar 

  214. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452462

    Article  PubMed  CAS  Google Scholar 

  215. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836846

    Article  PubMed  CAS  Google Scholar 

  216. Van de Peer Y, Maere S, Meyer A (2009) The evolutionary significance of ancient genome duplications. Nat Rev Genet 10:725732

    Article  PubMed  CAS  Google Scholar 

  217. Storchova Z, Kuffer C (2008) The consequences of tetraploidy and aneuploidy. J Cell Sci 121:38593866

    Article  PubMed  CAS  Google Scholar 

  218. Torres EM, Williams BR, Amon A (2008) Aneuploidy: cells losing their balance. Genetics 179:737746

    Article  PubMed  CAS  Google Scholar 

  219. Dierssen M, Herault Y, Estivill X (2009) Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev 89:887920

    Article  PubMed  CAS  Google Scholar 

  220. Aplan PD (2006) Causes of oncogenic chromosomal translocation. Trends Genet 22:4655

    Article  PubMed  CAS  Google Scholar 

  221. Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:8597

    Article  PubMed  CAS  Google Scholar 

  222. Stankiewicz P, Lupski JR (2010) Structural variation in the human genome and its role in disease. Annu Rev Med 61:437455

    Article  PubMed  CAS  Google Scholar 

  223. Brookes AJ (1999) The essence of SNPs. Gene 234:177186

    Article  PubMed  CAS  Google Scholar 

  224. Zhang J (2003) Evolution by gene duplication: An update. Trends Ecol Evol 18:292298

    Article  Google Scholar 

  225. Hastings PJ, Lupski JR, Rosenberg SM, Ira G (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551564

    Article  PubMed  CAS  Google Scholar 

  226. Kaessmann H, Vinckenbosch N, Long M (2009) RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10:1931

    Article  PubMed  CAS  Google Scholar 

  227. Hurles M (2004) Gene duplication: the genomic trade in spare parts. PLoS Biol 2:E206

    Article  PubMed  CAS  Google Scholar 

  228. Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123151

    Article  PubMed  CAS  Google Scholar 

  229. Zhang Z, Gerstein M (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14:328335

    Article  PubMed  CAS  Google Scholar 

  230. Marques-Bonet T, Girirajan S, Eichler EE (2009) The origins and impact of primate segmental duplications. Trends Genet 25:443454

    Article  PubMed  CAS  Google Scholar 

  231. Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:24532465

    Article  PubMed  CAS  Google Scholar 

  232. Brouwer JR, Willemsen R, Oostra BA (2009) Microsatellite repeat instability and neurological disease. Bioessays 31:7183

    Article  PubMed  CAS  Google Scholar 

  233. Zhang F, Gu W, Hurles ME, Lupski JR (2009) Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10:451481

    Article  PubMed  CAS  Google Scholar 

  234. Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP (2007) Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet 8:762775

    Article  PubMed  CAS  Google Scholar 

  235. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121152

    Article  PubMed  CAS  Google Scholar 

  236. Myers PZ (2008) Synteny: inferring ancestral genomes. Nature Education 1:A

    Google Scholar 

  237. Passarge E, Horsthemke B, Farber RA (1999) Incorrect use of the term synteny. Nat Genet 23(4):387

    Article  PubMed  CAS  Google Scholar 

  238. Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950962

    Article  PubMed  CAS  Google Scholar 

  239. Ehrlich J, Sankoff D, Nadeau JH (1997) Synteny conservation and chromosome rearrangements during mammalian evolution. Genetics 147:289296

    PubMed  CAS  Google Scholar 

  240. Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F (2003) ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 31:6367

    Article  PubMed  CAS  Google Scholar 

  241. Van de Peer Y (2004) Computational approaches to unveiling ancient genome duplications. Nat Rev Genet 5:752763

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to Maria Anisimova, Ricardo C. Rodriguez de la Vega, and Damien Devos for many valuable comments and suggestions during the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aidan Budd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Budd, A. (2012). Diversity of Genome Organisation. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 855. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-582-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-582-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-581-7

  • Online ISBN: 978-1-61779-582-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics