Skip to main content

Intracellular Recording In Vivo and Patch-Clamp Recording on Brain Slices

  • Protocol
  • First Online:
  • 1687 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Electrical activity is one of the major ways by which neurons communicate with each other. To understand how the brain works in physiological and pathological conditions, we need to know how the neuron works by monitoring the electrical activities of the neuron at different circumstances. Many electrophysiological techniques are available to obtain information from nerve system. This chapter introduces two techniques that can collect information of synaptic transmission and intrinsic membrane properties from individual neurons. Intracellular recording in vivo can examine the spontaneous firing, evoked postsynaptic potentials, and membrane properties at the cellular level in intact animals. This technique preserves the integrity of the brain, as well as the whole body system of the animal, and therefore is ideal to investigate the electrophysiological changes in various animal models of neurological disorders. Patch-clamp recording on brain slices is a well-control reduced system to examine the electrophysiology at the cellular level with the whole-cell mode. It can also examine the single-ion-channel activities with the cell-attached mode or by isolation of a small piece of cell membrane. Combining pharmacological manipulations, the patch-clamp recording on brain slices significantly expand the horizon of electrophysiological studies on neurons in physiological and pathological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Eccles JC, Fatt P, Koketsu K (1954) Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol 126(3):524

    PubMed  CAS  Google Scholar 

  2. Kandel ER, Spencer WA, Brinley FJ (1961) Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 24:225

    PubMed  CAS  Google Scholar 

  3. Kocsis JD, Sugimori M, Kitai ST (1977) Convergence of excitatory synaptic inputs to caudate spiny neurons. Brain Res 124(3):403

    Article  PubMed  CAS  Google Scholar 

  4. Wilson CJ, Groves PM (1981) Spontaneous firing patterns of identified spiny neurons in the rat neostriatum. Brain Res 220(1):67

    Article  PubMed  CAS  Google Scholar 

  5. Kitai ST, Kocsis JD, Preston RJ, Sugimori M (1976) Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase. Brain Res 109(3):601

    Article  PubMed  CAS  Google Scholar 

  6. Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14(3):741

    Article  PubMed  CAS  Google Scholar 

  7. Xi XZ, Xu ZC (1996) The effect of neurobiotin on membrane properties and morphology of intracellularly labeled neurons. J Neurosci Methods 65(1):27

    Article  PubMed  CAS  Google Scholar 

  8. Fan Y et al (2005) In vivo demonstration of a late depolarizing postsynaptic potential in CA1 pyramidal neurons. J Neurophysiol 93(3):1326

    Article  PubMed  Google Scholar 

  9. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press Inc., San Diego

    Google Scholar 

  10. Elliott KA, Greig ME, Benoy MP (1937) The metabolism of lactic and pyruvic acids in normal and tumour tissues: rat liver, brain and testis. Biochem J 31(7):1003

    PubMed  CAS  Google Scholar 

  11. Yamamoto C, McIlwain H (1966) Potentials evoked in vitro in preparations from the mammalian brain. Nature 210(5040):1055

    Article  PubMed  CAS  Google Scholar 

  12. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260(5554):799

    Article  PubMed  CAS  Google Scholar 

  13. Pang ZP, Deng P, Ruan YW, Xu ZC (2002) Depression of fast excitatory synaptic transmission in large aspiny neurons of the neostriatum after transient forebrain ischemia. J Neurosci 22(24):10948

    PubMed  CAS  Google Scholar 

  14. Deng P, Zhang Y, Xu ZC (2008) Inhibition of Ih in striatal cholinergic interneurons early after transient forebrain ischemia. J Cereb Blood Flow Metab 28(5):939

    Article  PubMed  CAS  Google Scholar 

  15. Howard AL et al (2007) Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol 97(3):2394

    Article  PubMed  CAS  Google Scholar 

  16. Bert S, Erwin E (1995) Single-channel recording, 2nd edn. Plenum Press, New York

    Google Scholar 

  17. Wolfgang W (2007) Patch-clamp analysis: advanced techniques, 2nd edn. Humana Press, Totowa, NJ

    Google Scholar 

  18. Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92(2):145

    Article  PubMed  CAS  Google Scholar 

  19. Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37(1):15

    Article  PubMed  CAS  Google Scholar 

  20. Abe Y, Furukawa K, Itoyama Y, Akaike N (1994) Glycine response in acutely dissociated ventromedial hypothalamic neuron of the rat: new approach with gramicidin perforated patch-clamp technique. J Neurophysiol 72(4):1530

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zao C. Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Deng, P., Xu, Z.C. (2012). Intracellular Recording In Vivo and Patch-Clamp Recording on Brain Slices. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-576-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-576-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-575-6

  • Online ISBN: 978-1-61779-576-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics