Skip to main content

Electrophysiological Assessment of Cerebral Vasospasm

  • Protocol
  • First Online:
Book cover Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1452 Accesses

Abstract

Cerebral vasospasm is chiefly due to sustained abnormal contraction of smooth muscle cells. Vasospasm develops several days after subarachnoid hemorrhage (SAH) and resolves after 10–14 days. Electrophysiological techniques have been used by several laboratories to elucidate some of the mechanisms involved in experimental vasospasm, including roles of calcium, potassium and transient receptor potential (TRP) channels. The purpose of this chapter is to briefly introduce the instrumentation, materials and procedures for using electrophysiology techniques to study the functional role of ion channels and receptors in smooth muscle cells or potentially other neuronal cells in the brain that may mediate vasospasm and/or brain dysfunction after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jahromi BS, Aihara Y, Ai J, Zhang ZD, Weyer G, Nikitina E, Yassari R, Houamed KM, Macdonald RL (2008) Temporal profile of potassium channel dysfunction in cerebrovascular smooth muscle after experimental subarachnoid haemorrhage. Neurosci Lett 440:81–86

    Article  PubMed  CAS  Google Scholar 

  2. Jahromi BS, Aihara Y, Ai J, Zhang ZD, Nikitina E, Macdonald RL (2008) Voltage-gated K+ channel dysfunction in myocytes from a dog model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 28:797–811

    Article  PubMed  CAS  Google Scholar 

  3. Jahromi BS, Aihara Y, Ai J, Zhang ZD, Weyer G, Nikitina E, Yassari R, Houamed KM, Macdonald RL (2008) Preserved BK channel function in vasospastic myocytes from a dog model of subarachnoid hemorrhage. J Vasc Res 45: 402–415

    Article  PubMed  CAS  Google Scholar 

  4. Nikitina E, Kawashima A, Takahashi M, Zhang ZD, Shang X, Ai J, Macdonald RL (2010) Alteration in voltage-dependent calcium channels in dog basilar artery after subarachnoid hemorrhage. Laboratory investigation. J Neurosurg 113:870–880

    Article  PubMed  CAS  Google Scholar 

  5. Koide M, Penar PL, Tranmer BI, Wellman GC (2007) Heparin-binding EGF-like growth factor mediates oxyhemoglobin-induced suppression of voltage-dependent potassium channels in rabbit cerebral artery myocytes. Am J Physiol Heart Circ Physiol 293:H1750–H1759

    Article  PubMed  CAS  Google Scholar 

  6. Xie A, Aihara Y, Bouryi VA, Nikitina E, Jahromi BS, Zhang ZD, Takahashi M, Macdonald RL (2007) Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab 27:1692–1701

    Article  PubMed  CAS  Google Scholar 

  7. Weyer GW, Jahromi BS, Aihara Y, Agbaje-Williams M, Nikitina E, Zhang ZD, Macdonald RL (2006) Expression and function of inwardly rectifying potassium channels after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:382–391

    Article  PubMed  CAS  Google Scholar 

  8. Ishiguro M, Wellman TL, Honda A, Russell SR, Tranmer BI, Wellman GC (2005) Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage. Circ Res 96:419–426

    Article  PubMed  CAS  Google Scholar 

  9. Ishiguro M, Morielli AD, Zvarova K, Tranmer BI, Penar PL, Wellman GC (2006) Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity. Circ Res 99: 1252–1260

    Article  PubMed  CAS  Google Scholar 

  10. Wellman GC (2006) Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage. Neurol Res 28:690–702

    Article  PubMed  CAS  Google Scholar 

  11. Sakmann B, Neher E (1984) Patch clamp techniques for studying ionic channels in excitable membranes. Annu Rev Physiol 46:455–472

    Article  PubMed  CAS  Google Scholar 

  12. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland, MA

    Google Scholar 

  13. Stockbridge N, Zhang H, Weir B (1991) Effects of K+ channel agonists cromakalim and pinacidil on rat basilar artery smooth muscle cells are mediated by Ca(++)-activated K+ channels. Biochem Biophys Res Comm 181:172–178

    Article  PubMed  CAS  Google Scholar 

  14. Park CC, Shin ML, Simard JM (1997) The complement membrane attack complex and the bystander effect in cerebral vasospasm. J Neurosurg 87:294–300

    Article  PubMed  CAS  Google Scholar 

  15. Han DH, Bai GY, Yang TK, Sim BS, Kwak YG, Kim CJ (2007) The effect of papaverine on ion channels in rat basilar smooth muscle cells. Neurol Res 29:544–550

    PubMed  Google Scholar 

  16. Dreier JP, Ebert N, Priller J, Meqow D, Lindauer U, Klee R, Reuter U, Imai Y, Einhaupl KM, Victorov I, Dirnagl U (2000) Products of hemolysis in the subarachnoid space inducing spreading ischemia in the cortex and focal necrosis in rats: a model for delayed ischemic neurological deficits after subarachnoid hemorrhage? J Neurosurg 93:658–666

    Article  PubMed  CAS  Google Scholar 

  17. Petzold GC, Haack S, von Bohlen Und HO, Priller J, Lehmann TN, Heinemann U, Dirnagl U, Dreier JP (2008) Nitric oxide modulates spreading depolarization threshold in the human and rodent cortex. Stroke 39:1292–1299

    Article  PubMed  CAS  Google Scholar 

  18. Pluta RM, Hansen-Schwartz J, Dreier J, Vajkoczy P, Macdonald RL, Nishizawa S, Kasuya H, Wellman G, Keller E, Zauner A, Dorsch N, Clark J, Ono S, Kiris T, Leroux P, Zhang JH (2009) Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res 31:151–158

    Article  PubMed  CAS  Google Scholar 

  19. Mutch WA (2010) New concepts regarding cerebral vasospasm: glial-centric mechanisms. Can J Anaesth 57:479–489

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Loch Macdonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ai, J., Macdonald, R.L. (2012). Electrophysiological Assessment of Cerebral Vasospasm. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-576-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-576-3_39

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-575-6

  • Online ISBN: 978-1-61779-576-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics