Skip to main content

Recursive Construction of Perfect DNA Molecules and Libraries from Imperfect Oligonucleotides

  • Protocol
  • First Online:
Gene Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 852))

Abstract

Making faultless complex objects from potentially faulty building blocks is a fundamental challenge in computer engineering, nanotechnology, and synthetic biology. We developed an error-correcting recursive construction procedure that attempts to address this challenge. Making DNA molecules from synthetic oligonucleotides using the procedure described here surpasses existing methods for de novo DNA synthesis in speed, precision, and amenability to automation. It provides for the first time a unified DNA construction platform for combining synthetic and natural DNA fragments, for constructing designer DNA libraries, and for making the faultless long synthetic DNA building blocks needed for de novo genome construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. John Von Neumann, R. S. P. (1952) Lectures on probabilistic logics and the synthesis of reliable organisms from unreliable components, California Institute of Technology, Pasadena.

    Google Scholar 

  2. Drexler, K. E. (1992) Nanosystems: molecular machinery, manufacturing, and computation, Wiley, New York.

    Google Scholar 

  3. Merkle, R. C. (1997) Convergent assembly, Nanotechnology 8, 18–22.

    Article  Google Scholar 

  4. Forster, A. C., and Church, G. M. (2006) Towards synthesis of a minimal cell, Mol Syst Biol 2, 45.

    Article  PubMed  Google Scholar 

  5. Carr, P. A., Park, J. S., Lee, Y. J., Yu, T., Zhang, S., and Jacobson, J. M. (2004) Protein-mediated error correction for de novo DNA synthesis, Nucleic Acids Res 32, e162.

    Article  PubMed  Google Scholar 

  6. Tian, J., Gong, H., Sheng, N., Zhou, X., Gulari, E., Gao, X., and Church, G. (2004) Accurate multiplex gene synthesis from programmable DNA microchips, Nature 432, 1050–1054.

    Article  PubMed  CAS  Google Scholar 

  7. Stemmer, W. P., Crameri, A., Ha, K. D., Brennan, T. M., and Heyneker, H. L. (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides, Gene 164, 49–53.

    Article  PubMed  CAS  Google Scholar 

  8. Au, L. C., Yang, F. Y., Yang, W. J., Lo, S. H., and Kao, C. F. (1998) Gene synthesis by a LCR-based approach: high-level production of leptin-L54 using synthetic gene in Escherichia coli, Biochem Biophys Res Commun 248, 200–203.

    Article  PubMed  CAS  Google Scholar 

  9. Xiong, A. S., Yao, Q. H., Peng, R. H., Li, X., Fan, H. Q., Cheng, Z. M., and Li, Y. (2004) A simple, rapid, high-fidelity and cost–effective PCR-based two-step DNA synthesis method for long gene sequences, Nucleic Acids Res 32, e98.

    Google Scholar 

  10. Gao, X., Yo, P., Keith, A., Ragan, T. J., and Harris, T. K. (2003) Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences, Nucleic Acids Res 31, e143.

    Article  PubMed  Google Scholar 

  11. Smith, H. O., Hutchison, C. A., 3rd, Pfannkoch, C., and Venter, J. C. (2003) Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides, Proc Natl Acad Sci USA 100, 15440–15445.

    Article  PubMed  CAS  Google Scholar 

  12. Rogers, H. (1967) Theory of recursive functions and effective computability, McGraw-Hill, New York.

    Google Scholar 

  13. Mandelbrot, B. B. (1982) The Fractals Book, Observatory 102, 151–151.

    Google Scholar 

  14. Chomsky, N. (1964) Syntactic structures, Mouton, The Hague.

    Google Scholar 

  15. Hopcroft, J. E., and Ullman, J. D. (1979) Introduction to automata theory, languages, and computation, Addison-Wesley, Reading, Mass.

    Google Scholar 

  16. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1983) Data structures and algorithms, Addison-Wesley, Reading, Mass.; London.

    Google Scholar 

  17. SLONING, BIOTECHNOLOGY, and GMBH. (2006) DE NOVO ENZYMATIC PRODUCTION OF NUCLEIC ACID MOLECULES.

    Google Scholar 

  18. Knight, T. (2003) Idempotent Vector Design for Standard Assembly of Biobricks, MIT Synthetic Biology Working Group.

    Google Scholar 

  19. Heinemann, M., and Panke, S. (2006) Synthetic biology – putting engineering into biology, Bioinformatics 22, 2790–2799.

    Article  PubMed  CAS  Google Scholar 

  20. Ryu, D. D., and Nam, D. H. (2000) Recent progress in biomolecular engineering, Biotechnol Prog 16, 2–16.

    Article  PubMed  CAS  Google Scholar 

  21. Caruthers, M. H. (1985) Gene synthesis machines: DNA chemistry and its uses, Science 230, 281–285.

    Article  PubMed  CAS  Google Scholar 

  22. Hutchison, C. A., 3rd, Phillips, S., Edgell, M. H., Gillam, S., Jahnke, P., and Smith, M. (1978) Mutagenesis at a specific position in a DNA sequence, J Biol Chem 253, 6551–6560.

    PubMed  CAS  Google Scholar 

  23. Alsuwaiyel, M. H. (1999) Algorithms: design techniques and analysis, World Scientific, Singapore; New Jersey.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Shapiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Sceince+Business Media, LLC

About this protocol

Cite this protocol

Linshiz, G., Yehezkel, T.B., Shapiro, E. (2012). Recursive Construction of Perfect DNA Molecules and Libraries from Imperfect Oligonucleotides. In: Peccoud, J. (eds) Gene Synthesis. Methods in Molecular Biology, vol 852. Humana Press. https://doi.org/10.1007/978-1-61779-564-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-564-0_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-563-3

  • Online ISBN: 978-1-61779-564-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics