Skip to main content

Combinatorial Genetic Transformation of Cereals and the Creation of Metabolic Libraries for the Carotenoid Pathway

  • Protocol
  • First Online:
Transgenic Plants

Abstract

Combinatorial nuclear transformation is used to generate populations of transgenic plants containing random selections from a collection of input transgenes. This is a useful approach because it provides the means to test different combinations of genes without the need for separate transformation experiments, allowing the comprehensive analysis of metabolic pathways and other genetic systems requiring the coordinated expression of multiple genes. The principle of combinatorial nuclear transformation is demonstrated in this chapter through protocols developed in our laboratory that allow combinations of genes encoding enzymes in the carotenoid biosynthesis pathway to be introduced into rice and a white-endosperm variety of corn. These allow the accumulation of carotenoids to be screened initially by the colour of the endosperm, which ranges from white through various shades of yellow and orange depending on the types and quantities of carotenoids present. The protocols cover the preparation of DNA-coated metal particles, the transformation of corn and rice plants by particle bombardment, the regeneration of transgenic plants, the extraction of carotenoids from plant tissues, and their analysis by high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, C., Naqvi, S., Breitenbach, J., Sandmann, G., Christou, P., and Capell, T. (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc. Natl. Acad. Sci. USA 105, 18232–18237.

    Article  PubMed  CAS  Google Scholar 

  2. Gómez-Galera, S., Pelacho, A. M., Gené, A., Capell, T., and Christou, P. (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep. 26, 1689–1715.

    Article  PubMed  Google Scholar 

  3. Capell, T. and Christou, P. (2004) Progress in plant metabolic engineering. Curr. Opin. Biotechnol. 15, 148–154.

    Article  PubMed  CAS  Google Scholar 

  4. Sandmann, G., Römer, S., and Fraser, P. D. (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metabol. Eng. 8, 291–302.

    Article  CAS  Google Scholar 

  5. Naqvi, S., Farré, G., Sanahuja, G., Capell, T., Zhu, C., and Christou, P. (2010) When more is better: multigene engineering in plants. Trends Plant Sci. 15, 48–56.

    Article  PubMed  CAS  Google Scholar 

  6. Halpin, C. (2005) Gene stacking in transgenic plants – the challenge for 21st century plant biotechnology. Plant Biotechnol. J. 3, 141–155.

    Article  PubMed  CAS  Google Scholar 

  7. Buckner, B., San-Miguel, P., and Bennetzen, J. L. (1996) The y1 gene of maize codes for phytoene synthase. Genetics 143, 479–488.

    PubMed  CAS  Google Scholar 

  8. Gallagher, G. E., Mattews, P. D., Li, F., and Wurtzel, E. T. (2004) Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses. Plant Physiol. 135, 1776–1783.

    Article  PubMed  CAS  Google Scholar 

  9. Potrykus, I., Harms, C. T., and Lorz, H. (1979) Callus formation from cell culture protoplasts of corn (Zea mays L.). Theor. Appl. Genet. 54, 209–214.

    Article  Google Scholar 

  10. Christou, P., Ford, T., and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technol. 9, 957–962.

    Article  Google Scholar 

  11. Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  12. Cortés, C., Esteve, M. J., Frígola, A., and Torregrosa, F. (2004) Identification and quantification of carotenoids including geometrical isomers in fruit and vegetable juices by liquid chromatography with ultraviolet-diode array detection. J. Agric. Food Chem. 52, 2203–2212.

    Article  PubMed  Google Scholar 

  13. Britton, G., Liaaen-Jensen, S., Pfander, H., Mercadante, A., and Egeland, E. (eds) (2004) Carotenoid Handbook. Birkhäuser, Basel.

    Google Scholar 

  14. Jain, R. K., Davey, M. R., Cocking, E. C., and Wu, R. (1997) Carbohydrate and osmotic requirements for high-frequency plant regeneration from protoplast-derived colonies of indica and japonica rice varieties. J. Exp. Bot. 48, 751–758.

    Article  CAS  Google Scholar 

  15. Sudhakar, D., Duc, L.T., Bong, B.B., Tinjuangjun, P., Maqbool, S. B., Valdez, M., Jefferson, R., and Christou, P. (1998) An efficient rice transformation system utilizing mature seed-derived explants and a portable, inexpensive particle bombardment device Transgenic Res. 7, 289–294.

    Article  CAS  Google Scholar 

  16. Valdez, M., Cabera-Ponce, J. L., Sudhakar, D., Herrera-Estrella, L., and Christou, P. (1998) Transgenic Central American, West African and Asian elite rice varieties resulting from particle bombardment of foreign DNA into mature seed-derived explants utilizing three different bombardment devices. Ann. Bot. 82, 795–801.

    Article  Google Scholar 

  17. Navarro-Alvarez, W., Baenziger, P. S., Eskridge, K. M., Shelton, D. R., Gustafson, V. D., and Hugo, M. (1994) Effect of sugars in wheat anther culture media. Plant Breed. 112, 53–62.

    Article  CAS  Google Scholar 

  18. Jain, R. K., Khehra, G. S., Lee, S.-H., Blackhall, N.W., Marchant, R., Davey, M. R., Power, J. B., Cocking, E. C., and Gosal, S. S. (1995) An improved procedure for plant regeneration from indica and japonica rice protoplasts. Plant Cell Rep. 14, 515–519.

    Article  CAS  Google Scholar 

  19. Lenrini, Z., Reyes, P., Martinez, C. P., and Roca, W. M. (1995) Androgenesis of highly recalcitrant rice genotypes with maltose and silver nitrate. Plant Sci. 110, 127–138.

    Article  Google Scholar 

  20. Naqvi, S., Zhu, C., Farre, G., Ramessar, K., Bassie, L., Breitenbach, J., Perez Conesa, D., Ros, G., Sandmann, G., Capell, T., and Christou, P. (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA 106, 7762–7767.

    Article  PubMed  CAS  Google Scholar 

  21. Twyman, R. M., and Christou, P. (2004) Plant transformation technology – particle bombardment, in Handbook of Plant Biotechnology (Christou, P., ed.), John Wiley & Sons, NY, pp. 263–289.

    Google Scholar 

  22. Vain, P., McMullen, M. D., and Finer, J. J. (1993) Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12, 84–88.

    Article  Google Scholar 

  23. Swedlund, B., and Locy, R. D. (1993) Sorbitol as the primary carbon source for the growth of embryogenic callus of maize. Plant Physiol. 103, 1339–1346.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Christou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Farre, G. et al. (2012). Combinatorial Genetic Transformation of Cereals and the Creation of Metabolic Libraries for the Carotenoid Pathway. In: Dunwell, J., Wetten, A. (eds) Transgenic Plants. Methods in Molecular Biology, vol 847. Humana Press. https://doi.org/10.1007/978-1-61779-558-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-558-9_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-557-2

  • Online ISBN: 978-1-61779-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics