Skip to main content

Expression of Artificial MicroRNAs in Physcomitrella patens

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 847))

Abstract

MicroRNAs (miRNAs) are ∼21-nt-long small RNAs transcribed from endogenous MIR genes which form precursor RNAs with a characteristic hairpin structure. MiRNAs control the expression of cognate target genes by binding to reverse complementary sequences resulting in cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA* sequence of endogenous MIR precursor genes, while maintaining the general pattern of matches and mismatches in the foldback. Thus, for functional gene analysis, amiRNAs can be designed to target any gene of interest. During the last decade, the moss Physcomitrella patens emerged as a model plant for functional gene analysis based on its unique ability to integrate DNA into the nuclear genome by homologous recombination which allows for the generation targeted gene knockout mutants. In addition to this, we developed a protocol to express amiRNAs in P. patens that has particular advantages over the generation of knockout mutants and might be used to speed up reverse genetics approaches in this model species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. de Carvalho, F., Gheysen, G., Kushnir, S., Van Montagu, M., Inze, D., and Castresana, C. (1992) Suppression of b-1,3-glucanase transgene expression in homozygous plants. EMBO J. 11, 2595–2602.

    PubMed  Google Scholar 

  2. Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  PubMed  CAS  Google Scholar 

  3. Matzke, M. A., Primig, M., Trnovsky, J., and Matzke, A. J. (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8, 643–649.

    PubMed  CAS  Google Scholar 

  4. Napoli, C., Lemieux, C., and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289.

    Article  PubMed  CAS  Google Scholar 

  5. Chapman, E. J. and Carrington, J. C. (2007) Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 8, 884–896.

    Article  PubMed  CAS  Google Scholar 

  6. Ossowski, S., Schwab, R., and Weigel, D. (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53, 674–90.

    Article  PubMed  CAS  Google Scholar 

  7. Ghildiyal, M. and Zamore, P. D. (2009) Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94–108.

    Article  PubMed  CAS  Google Scholar 

  8. Ambros, V. (2003) MicroRNA pathways in flies and worms: Growth, death, fat, stress, and timing. Cell 113, 673–676.

    Article  PubMed  CAS  Google Scholar 

  9. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  10. Cai, X., Hagedorn, C. H., and Cullen, B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966.

    Article  PubMed  CAS  Google Scholar 

  11. Kim, V. N. (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Cell Biol. 6, 376–385.

    Article  PubMed  CAS  Google Scholar 

  12. Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., Jacobsen, S. E., and Carrington, J. C. (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104.

    Article  PubMed  Google Scholar 

  13. Han, M. H., Goud, S., Song, L., and Fedoroff, N. (2004) The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc. Natl. Acad. Sci. USA 101, 1093–1098.

    Article  PubMed  CAS  Google Scholar 

  14. Fang, Y. and Spector, D. L. (2007) Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818–23.

    Article  PubMed  CAS  Google Scholar 

  15. Kurihara, Y., Takashi, Y., and Watanabe, Y. (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206–12.

    Article  PubMed  CAS  Google Scholar 

  16. Song, L., Axtell, M. J., and Fedoroff, N. V. RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr. Biol. 20, 37–41.

    Google Scholar 

  17. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L., and Poethig, R. S. (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368–2379.

    Article  PubMed  CAS  Google Scholar 

  18. Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H., and Poethig, R. S. (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 3691–3696.

    Article  PubMed  CAS  Google Scholar 

  19. Yu, B., Yang, Z., Li, J., Minakhina, S., Yang, M., Padgett, R. W., Steward, R., and Chen, X. (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., Hammond, S. M., Joshua-Tor, L., and Hannon, G. J. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  21. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H., and Siomi, M. C. (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848.

    Article  PubMed  CAS  Google Scholar 

  22. Khraiwesh, B., Arif, M. A., Seumel, G. I., Ossowski, S., Weigel, D., Reski, R., and Frank, W. Transcriptional control of gene expression by microRNAs. Cell 140, 111–122.

    Google Scholar 

  23. Aravin, A. A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B., Gaasterland, T., Meyer, J., and Tuschl, T. (2003) The small RNA profile during Drosophila melanogaster development. Dev. Cell. 5, 337–350.

    Article  PubMed  CAS  Google Scholar 

  24. Allen, E., Xie, Z., Gustafson, A. M., and Carrington, J. C. (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221.

    Article  PubMed  CAS  Google Scholar 

  25. Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A. C., Hilbert, J. L., Bartel, D. P., and Crete, P. (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell. 16, 69–79.

    Article  PubMed  CAS  Google Scholar 

  26. Yoshikawa, M., Peragine, A., Park, M. Y., and Poethig, R. S. (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev. 19, 2164–2175.

    Article  PubMed  CAS  Google Scholar 

  27. Axtell, M. J., Jan, C., Rajagopalan, R., and Bartel, D. P. (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127, 565–577.

    Article  PubMed  CAS  Google Scholar 

  28. Cho, S. H., Addo-Quaye, C., Coruh, C., Arif, M. A., Ma, Z., Frank, W., and Axtell, M. J. (2008) Physcomitrella patens DCL3 is required for 22–24 nt siRNA accumulation, suppression of retrotransposon-derived transcripts, and normal development. PLoS Genet. 4, e1000314.

    Article  PubMed  Google Scholar 

  29. Fahlgren, N., Montgomery, T. A., Howell, M. D., Allen, E., Dvorak, S. K., Alexander, A. L., and Carrington, J. C. (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16, 939–944.

    Article  PubMed  CAS  Google Scholar 

  30. Hunter, C., Willmann, M. R., Wu, G., Yoshikawa, M., de la Luz Gutierrez-Nava, M., and Poethig, S. R. (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133, 2973–2981.

    Article  PubMed  CAS  Google Scholar 

  31. Axtell, M. J., Snyder, J. A., and Bartel, D. P. (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19, 1750–1769.

    Article  PubMed  CAS  Google Scholar 

  32. Guo, H. S., Xie, Q., Fei, J. F., and Chua, N. H. (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17, 1376–1386.

    Article  PubMed  CAS  Google Scholar 

  33. Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D. P. (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–1197.

    Article  PubMed  CAS  Google Scholar 

  34. Alvarez, J. P., Pekker, I., Goldshmidt, A., Blum, E., Amsellem, Z., and Eshed, Y. (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18, 1134–1151.

    Article  PubMed  CAS  Google Scholar 

  35. Niu, Q. W., Lin, S. S., Reyes, J. L., Chen, K. C., Wu, H. W., Yeh, S. D., and Chua, N. H. (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24, 1420–1428.

    Article  PubMed  CAS  Google Scholar 

  36. Parizotto, E. A., Dunoyer, P., Rahm, N., Himber, C., and Voinnet, O. (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev. 18, 2237–2242.

    Article  PubMed  CAS  Google Scholar 

  37. Schwab, R., Ossowski, S., Riester, M., Warthmann, N., and Weigel, D. (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133.

    Article  PubMed  CAS  Google Scholar 

  38. Warthmann, N., Chen, H., Ossowski, S., Weigel, D., and Herve, P. (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3, e1829.

    Article  PubMed  Google Scholar 

  39. Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell. 9, 1327–1333.

    Article  PubMed  CAS  Google Scholar 

  40. Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., and Frank, W. (2008) Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol. 148, 684–693.

    Article  PubMed  CAS  Google Scholar 

  41. Kim, Y. S., Ke, F., Lei, X. Y., Zhu, R., and Zhang, Q. Y. (2010) Viral envelope protein 53R gene highly specific silencing and iridovirus resistance in fish cells by AmiRNA. PLoS One. 5, e10308.

    Google Scholar 

  42. Zhang, J., Liu, Q. S., and Dong, W. G. (2011) Blockade of proliferation and migration of ­gastric cancer via targeting CDH17 with an artificial microRNA. Med Oncol. 28, 494–501.

    Google Scholar 

  43. De Guire, V., Caron, M., Scott, N., Menard, C., Gaumont-Leclerc, M. F., Chartrand, P., Major, F., and Ferbeyre, G. (2010) Designing small multiple-target artificial RNAs. Nucleic Acids Res. 38, e140.

    Article  PubMed  Google Scholar 

  44. Boden, D., Pusch, O., Silbermann, R., Lee, F., Tucker, L., and Ramratnam, B. (2004) Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res. 32, 1154–1158.

    Article  PubMed  CAS  Google Scholar 

  45. Dickins, R. A., Hemann, M. T., Zilfou, J. T., Simpson, D. R., Ibarra, I., Hannon, G. J., and Lowe, S. W. (2005) Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295.

    PubMed  CAS  Google Scholar 

  46. Qu, J., Ye, J., and Fang, R. (2007) Artificial microRNA-mediated virus resistance in plants. J. Virol. 81, 6690–6699.

    Article  PubMed  CAS  Google Scholar 

  47. Fernandez, A. I., Viron, N., Alhagdow, M., Karimi, M., Jones, M., Amsellem, Z., Sicard, A., Czerednik, A., Angenent, G., Grierson, D., May, S., Seymour, G., Eshed, Y., Lemaire-Chamley, M., Rothan, C., and Hilson, P. (2009) Flexible tools for gene expression and silencing in tomato. Plant Physiol. 151, 1729–1740.

    Article  PubMed  CAS  Google Scholar 

  48. Wang, X., Yang, Y., Yu, C., Zhou, J., Cheng, Y., Yan, C., and Chen, J. (2010) A highly efficient method for construction of rice artificial microRNA vectors. Mol. Biotechnol. 46, 211–218

    Article  PubMed  CAS  Google Scholar 

  49. Khraiwesh, B., Ossowski, S., Weigel, D., Reski, R., and Frank, W. (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: An alternative to targeted gene knockouts. Plant Physiol. 148, 684–693.

    Article  PubMed  CAS  Google Scholar 

  50. Schwab, R., Palatnik, J. F., Riester, M., Schommer, C., Schmid, M., and Weigel, D. (2005) Specific effects of microRNAs on the plant transcriptome. Dev. Cell. 8, 517–527.

    Article  PubMed  CAS  Google Scholar 

  51. Mallory, A. C., Reinhart, B. J., Jones-Rhoades, M. W., Tang, G., Zamore, P. D., Barton, M. K., and Bartel, D. P. (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5’ region. EMBO J. 23, 3356–3364.

    Article  PubMed  CAS  Google Scholar 

  52. Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Korber, H., Redei, G. P., and Schell, J. (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86, 8467–8471.

    Article  PubMed  CAS  Google Scholar 

  53. Frank, W., Decker, E. L., and Reski, R. (2005) Molecular tools to study Physcomitrella patens. Plant Biol. 7, 220–227.

    Article  PubMed  CAS  Google Scholar 

  54. Volloch, V., Schweitzer, B., and Rits, S. (1994) Ligation-mediated amplification of RNA from murine erythroid cells reveals a novel class of b globin mRNA with an extended 5’-untranslated region. Nucleic Acids Res. 22, 2507–2511.

    Article  PubMed  CAS  Google Scholar 

  55. Llave, C., Xie, Z., Kasschau, K. D., and Carrington, J. C. (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Landesstiftung Baden-Württemberg (P-LS-RNS/40 to W.F.) and the German Academic Exchange Service (DAAD; PhD fellowships to I.F. and M.A.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fattash, I., Khraiwesh, B., Arif, M.A., Frank, W. (2012). Expression of Artificial MicroRNAs in Physcomitrella patens . In: Dunwell, J., Wetten, A. (eds) Transgenic Plants. Methods in Molecular Biology, vol 847. Humana Press. https://doi.org/10.1007/978-1-61779-558-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-558-9_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-557-2

  • Online ISBN: 978-1-61779-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics