Skip to main content

Development of Highly Efficient Genetic Transformation Protocols for Table Grape Sugraone and Crimson Seedless

  • Protocol
  • First Online:
Transgenic Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 847))

Abstract

Genetic engineering of grapevine is a powerful tool to study gene function as well as to introduce new traits into existing Vitis cultivars without altering their essential characters and identity. Agrobacterium-mediated transformation is one of the most efficient methods for gene transfer, but the efficiency of the procedure depends on several parameters such as the grapevine genotype, the selection strategy, the Agrobacterium strain, and concentration used to infect as well as the culture method among others. This chapter describes highly efficient genetic transformation protocols for seedless table grapevine cultivars Sugraone and Crimson Seedless by co-culturing embryogenic calli with Agrobacterium tumefaciens. The procedures are specific for each cultivar by adjusting the kanamycin concentration used to select transformed cells (20 mg/L and 50 mg/L kanamycin for Crimson Seedless and Sugraone, respectively) and the low Agrobacterium density used to infect the embryogenic calli (0.06 OD600 being more effective for the transformation of Crimson Seedless and 0.2 OD600 for Sugraone). Other factors that affect the transformation efficiency are the initial amount of embryogenic calli used to co-culture with Agrobacterium and the culture method of calli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kikkert, J. R., Thomas, M. R., and Reisch, B. I. (2001) Grapevine genetic engineering, in Molecular Biology & Biotechnology of the Grapevine (Roubelakis-Angelakis, K. A., ed.), Kluwer Academic, Dordrecht, The Netherlands, pp. 393–410.

    Google Scholar 

  2. Martinelli, L. and Mandolino, G. (1994) Genetic transformation and regeneration of transgenic plants in grapevine (Vitis rupestris S.). Theor. Appl. Genet. 88, 621–628.

    Article  Google Scholar 

  3. Perl, A., Lotan, O., Abu-Abied, M., and Holland, D. (1996) Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): The role of antioxidants during grape-Agrobacterium interactions. Nat. Biotech. 14, 624–628.

    Article  CAS  Google Scholar 

  4. Vidal, J. R., Kikkert, J. R., Wallace, P. G., and Reisch, B. I. (2003) High-efficiency biolistic co-transformation and plant regeneration of ‘Chardonnay’ (Vitis vinifera L.) containing nptII and antimicrobial peptide genes. Plant Cell Rep. 22, 252–260.

    Article  PubMed  CAS  Google Scholar 

  5. Iocco, P., Franks, P., and Thomas, M. R. (2001) Genetic transformation in mayor wine grape cultivars of Vitis vinifera L. Trans. Res. 10, 105–112.

    Article  CAS  Google Scholar 

  6. Harst, M., Bornhoff, B. A., Zyprian, E., and Töpfer, R. (2000) Influence of culture technique and genotype on the efficiency of Agrobacterium-mediated transformation of somatic embryos (Vitis vinifera) and their conversion to transgenic plants. Vitis 39, 99–102.

    Google Scholar 

  7. Torregrosa, L., Iocco, P., and Thomas, M. R. (2002) Influence of Agrobacterium strain, culture medium, and cultivar on the transformation efficiency of Vitis vinifera L. Am. J. Enol. Vitic. 53, 183–190.

    CAS  Google Scholar 

  8. Vidal, J. R., Gomez, C., Cutanda, M. C., Shrestha, B. R., Bouquet, A., Thomas, M. R., and Torregrosa, T. (2010) Use of gene transfer technology for functional studies in grapevine. Aust. J. Grape Wine Res. 16, 138–151.

    Article  CAS  Google Scholar 

  9. Spielmann, A., Krastanova, S., Douet-Orhant, V., and Gugerli, P. (2000) Analysis of transgenic grapevine (Vitis rupestris) and Nicotiana benthamiana plants expressing an Arabis mosaic virus coat protein gene. Plant Sci. 156, 235–244.

    Article  PubMed  CAS  Google Scholar 

  10. Yamamoto, T., Iketani, H., Ieki, H., Nishizawa, Y., Notsuka, K., Hibi, T., Hayashi, T., and Matsuta, N. (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19, 639–646.

    Article  CAS  Google Scholar 

  11. Legrand, V., Dalmayrac, S., Latché, A., Pech, J. C., Bouzayen, M., Fallot, J., Torregrosa, L., Bouquet, A., and Roustan, J. P. (2003) Constitutive expression of Vir-ERE gene in transformed grapevines confers enhanced resistance to eutypine, a toxin from Eutypa lata. Plant Sci. 164, 809–814.

    Article  CAS  Google Scholar 

  12. Wang, Q., Li, P., Hanania, U., Sahar, N., Mawassi, M., Gafny, R., Sela, I., Tanne, E., and Perl, A. (2005) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimising selection regimens and utilizing cryopreserved cell suspensions. Plant Sci. 168, 565–571.

    Article  CAS  Google Scholar 

  13. Fan, C., Pu, N., Wang, X., Wang, Y., Fang, L., Xu, W., and Zhang, J. (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tiss. Org. Cult. 92, 197–206.

    Article  CAS  Google Scholar 

  14. Baribault, T. J., Skene, K. G. M., and Scott, N. S. (1989) Genetic transformation of grapevine cells. Plant Cell Rep. 8, 137–140.

    Article  CAS  Google Scholar 

  15. Berres, R., Otten, L., Tinland, B., Malgarini-Clog, E., and Walter, B. (1992) Transformation of Vitis tissue by different strains of Agrobacterium tumefaciens containing the T-6B gene. Plant Cell Rep. 11, 192–195.

    Article  CAS  Google Scholar 

  16. Oláh, R., Szegedi, E., Ruthner, S., and Korbuly, J. (2003) Optimization of conditions for regeneration and genetic transformation of rootstock- and scion grape varieties. Acta Hortic. 603, 491–497.

    Google Scholar 

  17. Mozsár, J., Viczián, O., and Süle, S. (1998) Agrobacterium-mediated genetic transformation of an interspecific grapevine. Vitis 37, 127–130.

    Google Scholar 

  18. Li, Z. T., Dhekney, S., Dutt, M., Van Aman, M., Tattersali, J., Kelley, K. T., and Gray, D. J. (2006) Optimizing Agrobacterium-mediated transformation of grapevine. In Vitro Cell Dev. Biol.-Plant 42, 220–227.

    Article  CAS  Google Scholar 

  19. Agüero, C. B., Meredith, C. P., and Dandekar, A. M. (2006) Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45, 1–8.

    Google Scholar 

  20. López-Pérez, A. J., Velasco, L., Pazos-Navarro, M., and Dabauza, M. (2008) Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density. Plant Cell Tiss. Org. Cult. 94, 189–199.

    Article  Google Scholar 

  21. Bornhoff, B. A., Harst, M., Zyprian, E., and Töpfer, R. (2005) Transgenic plants of Vitis vinifera cv. Seyval blanc. Plant Cell Rep. 24, 433–438.

    Article  CAS  Google Scholar 

  22. López-Pérez, A.J., Carreño, J., Martinez-Cutillas, A., and Dabauza, M. (2005) High embryogenic ability and plant regeneration of table grapevine cultivars (Vitis vinifera L.) induced by activated charcoal. Vitis 44, 79–85.

    Google Scholar 

  23. Sambrook, K. and Russell, D. (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  24. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15, 473–497.

    Article  CAS  Google Scholar 

  25. López-Pérez, A. J., Carreño, J., and Dabauza, M. (2006) Somatic embryo germination and plant regeneration of three grapevine cvs: Effect of IAA, GA3 and embryo morphology. Vitis 45, 141–143.

    Google Scholar 

  26. Koncz, C. and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.

    Article  CAS  Google Scholar 

  27. Hood, E. E., Gelvin, S. B., Melchers, L. S., and Hoekema, A. (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgen. Res. 2, 208–218.

    Article  CAS  Google Scholar 

  28. Chiu, W., Niwa, Y., Zeng, W., and Hirano, T. (1996) Engineered GFP as a vital reporter in plants. Current Biol. 6, 325–330.

    Article  CAS  Google Scholar 

  29. Ghorbel, R., Juárez, J., Navarro, L., and Peña, L. (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating woody fruit plants. Theor. Appl. Genet. 99, 350–358.

    Article  Google Scholar 

  30. Lodhi, M. A., Ye, G.-N., Weeden, N. F., and Reisch, B. I. (1994) A simple and efficient method for DNA extraction from grapevine cultivars, Vitis species and Ampelopsis. Plant Mol. Biol. Rep. 12, 6–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. A. J. López-Pérez and M. Pazos-Navarro for their contribution in the development of this grape genetic transformation protocol. This research was supported by grants from the Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (PR06-002) and from Fundación Séneca. Mercedes Dabauza was supported by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Dabauza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dabauza, M., Velasco, L. (2012). Development of Highly Efficient Genetic Transformation Protocols for Table Grape Sugraone and Crimson Seedless. In: Dunwell, J., Wetten, A. (eds) Transgenic Plants. Methods in Molecular Biology, vol 847. Humana Press. https://doi.org/10.1007/978-1-61779-558-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-558-9_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-557-2

  • Online ISBN: 978-1-61779-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics