Skip to main content

Testing Departure from Hardy–Weinberg Proportions

  • Protocol
  • First Online:
Statistical Human Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 850))

Abstract

The Hardy–Weinberg principle, one of the most important principles in population genetics, was originally developed for the study of allele frequency changes in a population over generations. It is now, however, widely used in studies of human diseases to detect inbreeding, populations stratification, and genotyping errors. For assessment of deviation from the Hardy–Weinberg proportions in data, the most popular approaches include the asymptotic Pearson’s chi-square goodness-of-fit test and the exact test. The Pearson’s chi-square goodness-of-fit test is simple and straightforward, but it is very sensitive to small sample size or rare allele frequency. The exact test of Hardy–Weinberg proportions is preferable in these situations. The exact test can be performed through complete enumeration of heterozygote genotypes or on the basis of the Markov chain Monte Carlo procedure. In this chapter, we describe the Hardy–Weinberg principle and the commonly used Hardy–Weinberg proportions tests and their applications, and we demonstrate how the chi-square test and exact test of Hardy–Weinberg proportions can be performed step-by-step using the popular software programs SAS, R, and PLINK, which have been widely used in genetic association studies, along with numerical examples. We also discuss recent approaches for testing Hardy–Weinberg proportions in case–control study designs that are better than traditional approaches for testing Hardy–Weinberg proportions in controls only. Finally, we note that deviation from the Hardy–Weinberg proportions in affected individuals can provide evidence for an association between genetic variants and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castle WE (1903) The laws of Galton and Mendel and some laws governing race improvement by selection. Proc Amer Acad Arts Sci 35:233–242

    Google Scholar 

  2. Hardy GH (1908) Mendelian proportions in a mixed population. Science 28:49–50

    Article  PubMed  CAS  Google Scholar 

  3. Weinberg W (1908) On the demonstration of heredity in man. In: Boyer SH (ed) Papers on human genetics. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  4. Crow JF (1988) Eighty years ago: the beginnings of population genetics. Genetics 119:473–476

    PubMed  CAS  Google Scholar 

  5. Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  6. Cockerham CC (1969) Variance of gene frequencies. Evolution 23:72–84

    Article  Google Scholar 

  7. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  Google Scholar 

  8. Price GR (1971) Extension of the Hardy-Weinberg law to assortative mating. Ann Hum Genet 34:455–458

    Article  PubMed  CAS  Google Scholar 

  9. Shockley W (1973) Deviations from Hardy-Weinberg frequencies caused by assortative mating in hybrid populations. Proc Natl Acad Sci USA 70:732–736

    Article  PubMed  CAS  Google Scholar 

  10. Templeton A (2006) Population genetics and microevolutionary theory. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  11. Voight BF, Pritchard JK (2005) Confounding from cryptic relatedness in case–control association studies. PLoS Genet 1:e32

    Article  PubMed  Google Scholar 

  12. Weinberg CR, Morris RW (2003) Invited commentary: Testing for Hardy-Weinberg disequilibrium using a genome single-nucleotide polymorphism scan based on cases only. Am J Epidemiol 158:401–403

    Article  PubMed  Google Scholar 

  13. Deng HW, Chen WM, Recker RR (2000) QTL fine mapping by measuring and testing for Hardy-Weinberg and linkage disequilibrium at a series of linked marker loci in extreme samples of populations. Am J Hum Genet 66:1027–1045

    Article  PubMed  CAS  Google Scholar 

  14. Deng HW, Chen WM, Recker RR (2001) Population admixture: detection by Hardy-Weinberg test and its quantitative effects on linkage-disequilibrium methods for localizing genes underlying complex traits. Genetics 157:885–897

    PubMed  CAS  Google Scholar 

  15. Grover VK, Cole DE, Hamilton DC (2010) Attributing Hardy-Weinberg disequilibrium to population stratification and genetic association in case–control studies. Ann Hum Genet 74:77–87

    Article  PubMed  Google Scholar 

  16. Ryckman K, Williams SM (2008) Calculation and use of the Hardy-Weinberg model in association studies. Curr Protoc Hum Genet Chapter 1:Unit 1.18

    Google Scholar 

  17. Wigginton JE, Cutler DJ, Abecasis GR (2005) A note on exact tests of Hardy-Weinberg equilibrium. Am J Hum Genet 76:887–893

    Article  PubMed  CAS  Google Scholar 

  18. Attia J, Thakkinstian A, McElduff P et al (2010) Detecting genotyping error using measures of degree of Hardy-Weinberg disequilibrium. Stat Appl Genet Mol Biol 9(1) :Article 5

    Google Scholar 

  19. Gomes I, Collins A, Lonjou C et al (1999) Hardy-Weinberg quality control. Ann Hum Genet 63:535–538

    Article  PubMed  CAS  Google Scholar 

  20. Graffelman J, Camarena JM (2008) Graphical tests for Hardy-Weinberg equilibrium based on the ternary plot. Hum Hered 65:77–84

    Article  PubMed  Google Scholar 

  21. Hosking L, Lumsden S, Lewis K et al (2004) Detection of genotyping errors by Hardy-Weinberg equilibrium testing. Eur J Hum Genet 12:395–399

    Article  PubMed  CAS  Google Scholar 

  22. Laurie CC, Doheny KF, Mirel DB et al (2010) Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol 34(6):591–602

    Article  PubMed  Google Scholar 

  23. Li M, Li C (2008) Assessing departure from Hardy-Weinberg equilibrium in the presence of disease association. Genet Epidemiol 32:589–599

    Article  PubMed  Google Scholar 

  24. Schaid DJ, Batzler AJ, Jenkins GD et al (2006) Exact tests of Hardy-Weinberg equilibrium and homogeneity of disequilibrium across strata. Am J Hum Genet 79:1071–1080

    Article  PubMed  CAS  Google Scholar 

  25. Tapper W, Collins A, Gibson J et al (2005) A map of the human genome in linkage disequilibrium units. Proc Natl Acad Sci USA 102:11835–11839

    Article  PubMed  CAS  Google Scholar 

  26. Wang J, Shete S (2010) Using both cases and controls for testing hardy-weinberg proportions in a genetic association study. Hum Hered 69:212–218

    Article  PubMed  Google Scholar 

  27. Weale ME (2010) Quality control for genome-wide association studies. Methods Mol Biol 628:341–372

    Article  PubMed  CAS  Google Scholar 

  28. Wittke-Thompson JK, Pluzhnikov A, Cox NJ (2005) Rational inferences about departures from Hardy-Weinberg equilibrium. Am J Hum Genet 76:967–986

    Article  PubMed  CAS  Google Scholar 

  29. Pompanon F, Bonin A, Bellemain E et al (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    Article  PubMed  CAS  Google Scholar 

  30. Akey JM, Zhang K, Xiong M et al (2001) The effect that genotyping errors have on the robustness of common linkage-disequilibrium measures. Am J Hum Genet 68:1447–1456

    Article  PubMed  CAS  Google Scholar 

  31. Weiss ST, Silverman EK, Palmer LJ (2001) Case–control association studies in pharmacogenetics. Pharmacogenomics J 1:157–158

    Article  PubMed  CAS  Google Scholar 

  32. Xu J, Turner A, Little J et al (2002) Positive results in association studies are associated with departure from Hardy-Weinberg equilibrium: hint for genotyping error? Hum Genet 111:573–574

    Article  PubMed  Google Scholar 

  33. Wang J, Shete S (2008) A test for genetic association that incorporates information about deviation from Hardy-Weinberg proportions in cases. Am J Hum Genet 83:53–63

    Article  PubMed  CAS  Google Scholar 

  34. Cox DG, Kraft P (2006) Quantification of the power of Hardy-Weinberg equilibrium testing to detect genotyping error. Hum Hered 61:10–14

    Article  PubMed  Google Scholar 

  35. Fardo DW, Becker KD, Bertram L et al (2009) Recovering unused information in genome-wide association studies: the benefit of analyzing SNPs out of Hardy-Weinberg equilibrium. Eur J Hum Genet. doi:10.1038/ejhg.2009.85

  36. Leal SM (2005) Detection of genotyping errors and pseudo-SNPs via deviations from Hardy-Weinberg equilibrium. Genet Epidemiol 29:204–214

    Article  PubMed  Google Scholar 

  37. Teo YY, Fry AE, Clark TG et al (2007) On the usage of HWE for identifying genotyping errors. Ann Hum Genet 71:701–703

    Article  PubMed  CAS  Google Scholar 

  38. Zou GY, Donner A (2006) The merits of testing Hardy-Weinberg equilibrium in the analysis of unmatched case–control data: a cautionary note. Ann Hum Genet 70:923–933

    Article  PubMed  CAS  Google Scholar 

  39. Salanti G, Amountza G, Ntzani EE et al (2005) Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet 13:840–848

    Article  PubMed  CAS  Google Scholar 

  40. Feder JN, Gnirke A, Thomas W et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  PubMed  CAS  Google Scholar 

  41. Jiang R, Dong J, Wang D et al (2001) Fine-scale mapping using Hardy-Weinberg disequilibrium. Ann Hum Genet 65:207–219

    Article  PubMed  CAS  Google Scholar 

  42. Nielsen DM, Ehm MG, Weir BS (1998) Detecting marker-disease association by testing for Hardy-Weinberg disequilibrium at a marker locus. Am J Hum Genet 63:1531–1540

    Article  PubMed  CAS  Google Scholar 

  43. Lee WC (2003) Searching for disease-susceptibility loci by testing for Hardy-Weinberg disequilibrium in a gene bank of affected individuals. Am J Epidemiol 158:397–400

    Article  PubMed  Google Scholar 

  44. Song K, Elston RC (2006) A powerful method of combining measures of association and Hardy-Weinberg disequilibrium for fine-mapping in case–control studies. Stat Med 25:105–126

    Article  PubMed  Google Scholar 

  45. Won S, Elston RC (2008) The power of independent types of genetic information to detect association in a case–control study design. Genet Epidemiol 32:731–756

    Article  PubMed  Google Scholar 

  46. Hoh J, Wille A, Ott J (2001) Trimming, weighting, and grouping SNPs in human case–control association studies. Genome Res 11:2115–2119

    Article  PubMed  CAS  Google Scholar 

  47. Yates F (1934) Contingency tables involving small numbers and the X2 test. J Roy Stat Soc Suppl 1:217–235

    Article  Google Scholar 

  48. Fisher RA (1935) The logic of inductive inference. J Roy Stat Soc 98:39–54

    Article  Google Scholar 

  49. Emigh T (1954) A comparison of tests for Hardy-Weinberg equilibrium. Biometrics 36:627–642

    Article  Google Scholar 

  50. Haldane JBS (1954) An exact test for randomness of mating. J Genet 52:631–635

    Google Scholar 

  51. Engels WR (2009) Exact tests for Hardy-Weinberg proportions. Genetics 183:1431–1441

    Article  PubMed  Google Scholar 

  52. Levene H (1949) On a matching problem arising in genetics. Ann Math Stat 20:91–94

    Article  Google Scholar 

  53. Louis EJ, Dempster ER (1987) An exact test for Hardy-Weinberg and multiple alleles. Biometrics 43:805–811

    Article  PubMed  CAS  Google Scholar 

  54. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  PubMed  CAS  Google Scholar 

  55. Aoki S (2003) Network algorithm for the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrical J 45:471–490

    Article  Google Scholar 

  56. Maurer HP, Melchinger AE, Frisch M (2007) An incomplete enumeration algorithm for an exact test of Hardy-Weinberg proportions with multiple alleles. Theor Appl Genet 115:393–398

    Article  PubMed  CAS  Google Scholar 

  57. Huber M, Chen Y, Dinwoodie I et al (2006) Monte Carlo algorithms for Hardy-Weinberg proportions. Biometrics 62:49–53

    Article  PubMed  Google Scholar 

  58. Yuan A, Bonney GE (2003) Exact test of Hardy-Weinberg equilibrium by Markov chain Monte Carlo. Math Med Biol 20:327–340

    Article  PubMed  Google Scholar 

  59. Lazzeroni LC, Lange K (1997) Markov chains for Monte Carlo tests of genetic equilibrium in multidimensional contingency tables. Ann Stat 25:138–168

    Article  Google Scholar 

  60. Hernandez JL, Weir BS (1989) A disequilibrium coefficient approach to Hardy-Weinberg testing. Biometrics 45:53–70

    Article  PubMed  CAS  Google Scholar 

  61. Maiste PJ, Weir BS (2004) Optimal testing strategies for large, sparse multinomial models. Comput Stat Data An 46:605–620

    Article  Google Scholar 

  62. Montoya-Delgado LE, Irony TZ, de BPC et al (2001) An unconditional exact test for the Hardy-Weinberg equilibrium law: sample-space ordering using the Bayes factor. Genetics 158:875–883

    Google Scholar 

  63. Shoemaker J, Painter I, Weir BS (1998) A Bayesian characterization of Hardy-Weinberg disequilibrium. Genetics 149:2079–2088

    PubMed  CAS  Google Scholar 

  64. Wakefield J (2010) Bayesian methods for examining Hardy-Weinberg equilibrium. Biometrics 66:257–265

    Article  PubMed  Google Scholar 

  65. Wellek S, Goddard KA, Ziegler A (2010) A confidence-limit-based approach to the assessment of Hardy-Weinberg equilibrium. Biom J 52:253–270

    PubMed  Google Scholar 

  66. Goddard KA, Ziegler A, Wellek S (2009) Adapting the logical basis of tests for Hardy-Weinberg Equilibrium to the real needs of association studies in human and medical genetics. Genet Epidemiol 33:569–580

    Article  PubMed  Google Scholar 

  67. SAS Institute Inc. (2008) SAS/GeneticsTM 9.2 User’s Guide. SAS Institute Inc., Cary, NC

    Google Scholar 

  68. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  69. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  70. Purcell S (2009) PLINK (v1.07).

    Google Scholar 

  71. Yu C, Zhang S, Zhou C et al (2009) A likelihood ratio test of population Hardy-Weinberg equilibrium for case–control studies. Genet Epidemiol 33:275–280

    Article  PubMed  Google Scholar 

  72. Taylor J, Tibshirani R (2006) A tail strength measure for assessing the overall univariate significance in a dataset. Biostatistics 7:167–181

    Article  PubMed  Google Scholar 

  73. Wang J, Shete S (2009) Is the tail-strength measure more powerful in tests of genetic association? response. Am J Hum Genet 84:298–300

    Article  CAS  Google Scholar 

  74. Warnes G, Gorjanc G, Leisch F et al (2008) genetics: Population Genetics.

    Google Scholar 

  75. Painter I (2010) GWASExactHW: Exact Hardy-Weinburg testing for Genome Wide Association Studies.

    Google Scholar 

  76. Maindonald JH, Johnson R (2009) hwde: Models and tests for departure from Hardy-Weinberg equilibrium and independence between loci.

    Google Scholar 

  77. Zhao JH (2007) gap: Genetic analysis package. J Stat Softw 23(8):1–18

    Google Scholar 

  78. Cardillo G (2007) HWtest: a routine to test if a locus is in Hardy Weinberg equilibrium (exact test).

    Google Scholar 

  79. Barrett JC, Fry B, Maller J et al (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  80. Li B, Leal SM (2009) Deviations from hardy-weinberg equilibrium in parental and unaffected sibling genotype data. Hum Hered 67:104–115

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Shete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wang, J., Shete, S. (2012). Testing Departure from Hardy–Weinberg Proportions. In: Elston, R., Satagopan, J., Sun, S. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 850. Humana Press. https://doi.org/10.1007/978-1-61779-555-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-555-8_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-554-1

  • Online ISBN: 978-1-61779-555-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics