Skip to main content

Single-Marker Family-Based Association Analysis Conditional on Parental Information

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 850))

Abstract

Family-based designs have been commonly used in association studies. Different family structures such as extended pedigrees and nuclear families, including parent–offspring triads and families with multiple affected siblings (multiplex families), can be ascertained for family-based association analysis. Flexible association tests that can accommodate different family structures have been proposed. The pedigree disequilibrium test (PDT) (Am J Hum Genet 67:146-154, 2000) can use full genotype information from general (possibly extended) pedigrees with one or multiple affected siblings but requires parental genotypes or genotypes of unaffected siblings. On the other hand, the association in the presence of linkage (APL) test (Am J Hum Genet 73:1016-1026, 2003) is restricted to nuclear families with one or more affected siblings but can infer missing parental genotypes properly by accounting for identity-by-descent (IBD) parameters. Both the PDT and APL are powerful association tests in the presence of linkage and can be used as complementary tools for association analysis. This chapter introduces these two tests and compares their properties. Recommendations and notes for performing the tests in practice are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ma DQ, Salyakina D, Jaworski JM et al (2009) A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann Hum Genet 73:263–273

    Article  PubMed  CAS  Google Scholar 

  2. International Multiple Sclerosis Genetics Consortium, Hafler DA, Compston A, et al Risk alleles for multiple sclerosis identified by a genomewide study (2007) N Engl J Med 357:851–862

    Google Scholar 

  3. Sklar P, Gabriel SB, McInnis MG, et al (2002) Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Brain-derived neutrophic factor. Mol. Psychiatry 7:579–593

    CAS  Google Scholar 

  4. Oudot T, Lesueur F, Guedj M. et al (2009) An association study of 22 candidate genes in psoriasis families reveals shared genetic factors with other autoimmune and skin disorders. J Invest Dermatol 129:2637–2645

    Article  PubMed  CAS  Google Scholar 

  5. Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    Article  PubMed  CAS  Google Scholar 

  6. Spielman RS, McGinnis R E, Ewens WJ (1993) Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 52:506–516

    PubMed  CAS  Google Scholar 

  7. Martin ER, Monks SA, Warren LL, Kaplan NL (2000) A test for linkage and association in general pedigrees: the pedigree disequilibrium test. Am J Hum Genet 67:146–154

    Article  PubMed  CAS  Google Scholar 

  8. Martin ER, Kaplan NL, Weir BS (1997) Tests for linkage and association in nuclear families. Am J Hum Genet 61:439–448

    Article  PubMed  CAS  Google Scholar 

  9. Spielman RS, Ewens WJ (1998) A sibship test for linkage in the presence of association: The sib transmission/disequilibrium test. Am J Hum Genet 62:450–458

    Article  PubMed  CAS  Google Scholar 

  10. Boehnke M, Langefeld, CD (1998) Genetic Association Mapping Based on Discordant Sib Pairs: The Discordant-Alleles Test. Am. J. Hum. Genet. 62:950–961

    Article  PubMed  CAS  Google Scholar 

  11. Horvath S, Laird NM (1998) A discordant-sibship test for disequilibrium and linkage: no need for parental data. Am J Hum Genet 63(6):1886–97

    Article  PubMed  CAS  Google Scholar 

  12. Martin ER, Bass MP, Hauser ER, Kaplan NL (2003) Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 73:1016–1026

    Article  PubMed  CAS  Google Scholar 

  13. Clayton D (1999) A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 65:1170–1177

    Article  PubMed  CAS  Google Scholar 

  14. Dudbridge F (2008) Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum. Hered 66:87–98

    Article  PubMed  Google Scholar 

  15. Knapp M (1999) The transmission/disequilibrium test and parental-genotype reconstruction: The reconstruction-combined transmission/disequilibrium test. Am J Hum Genet 64:861–870

    Article  PubMed  CAS  Google Scholar 

  16. Rabinowitz D, Laird N (2000) A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered 50:211–223

    Article  PubMed  CAS  Google Scholar 

  17. Chung RH, Hauser ER, Martin E R (2006) The APL Test: Extension to General Nuclear Families and Haplotypes and Examination of Its Robustness. Hum. Hered 61:189–199

    Article  PubMed  Google Scholar 

  18. Martin ER, Bass MP, Kaplan NL (2001) Correcting for a potential bias in the pedigree disequilibrium test. Am J Hum Genet 68:1065–1067

    Article  PubMed  CAS  Google Scholar 

  19. Martin ER, Bass MP, Gilbert JR, Pericak-Vance MA, Hauser ER (2003) Genotype-based association test for general pedigrees: the genotype-PDT. Genet Epidemiol 25:203–213

    Article  PubMed  CAS  Google Scholar 

  20. Gregory SG, Schmidt S, Seth P, et al (2007) Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 39:1083–1091

    Article  PubMed  CAS  Google Scholar 

  21. Martin ER, Scott WK, Nance MA et al (2001) Association of single-nucleotide polymorphisms of the tau gene with late-onset Parkinson disease. JAMA 286:2245–2250

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt S, Hauser MA, Scott WK. et al (2006) Cigarette Smoking Strongly Modifies the Association of LOC387715 and Age-Related Macular Degeneration. Am J Hum Genet 78:852–864

    Article  PubMed  CAS  Google Scholar 

  23. Wang L, Hauser ER, Shah SH et al (2007) Peakwide mapping on chromosome 3q13 identifies the kalirin gene as a novel candidate gene for coronary artery disease. Am J Hum Genet 80:650–663

    Article  PubMed  CAS  Google Scholar 

  24. Prokunina L, Castillejo-Lopez C, Oberg, F. et al (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    Article  PubMed  CAS  Google Scholar 

  25. Deak KL, Dickerson ME, Linney E, et al (2005) Analysis of ALDH1A2, CYP26A1, CYP26B1, CRABP1, and CRABP2 in human neural tube defects suggests a possible association with alleles in ALDH1A2. Birth Defects Res. A. Clin. Mol. Teratol. 73:868–875

    Article  PubMed  CAS  Google Scholar 

  26. Purcell S, Neale B, Todd-Brown K, et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  CAS  Google Scholar 

  27. Efron B, Tibshirani, R (1993) An Introduction to the Bootstrap. Chapman & Hall, New York

    Google Scholar 

  28. Li B, Leal, SM (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83:311–321

    Article  PubMed  CAS  Google Scholar 

  29. Madsen, B. E., and Browning, S. R. (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet 5, e1000384

    Article  PubMed  Google Scholar 

  30. Morris AP, Zeggini E (2010) An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet Epidemiol 34:188–193

    Article  PubMed  Google Scholar 

  31. Price AL, Kryukov GV, de Bakker PI, Purcell SM, Staples J, Wei LJ, Sunyaev SR (2010) Pooled association tests for rare variants in exon-resequencing studies. Am J Hum Genet 86:832–838

    Article  PubMed  Google Scholar 

  32. Chung RH, Schmidt M A, Morris RW, Martin ER (2010) CAPL: a novel association test using case–control and family data and accounting for population stratification. Genet Epidemiol 7:747–755.

    Article  Google Scholar 

  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959

    PubMed  CAS  Google Scholar 

  34. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  35. Liang K, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  Google Scholar 

  36. Chung RH, Schmidt S, Martin ER, Hauser ER (2008) Ordered-subset analysis (OSA) for family-based association mapping of complex traits. Genet Epidemiol 32:627–637

    Article  PubMed  Google Scholar 

  37. Hauser ER, Watanabe RM, Duren WL, Bass MP, Langefeld CD, Boehnke M (2004) Ordered subset analysis in genetic linkage mapping of complex traits. Genet Epidemiol 27:53–63

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eden R. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chung, RH., Martin, E.R. (2012). Single-Marker Family-Based Association Analysis Conditional on Parental Information. In: Elston, R., Satagopan, J., Sun, S. (eds) Statistical Human Genetics. Methods in Molecular Biology, vol 850. Humana Press. https://doi.org/10.1007/978-1-61779-555-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-555-8_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-554-1

  • Online ISBN: 978-1-61779-555-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics