Skip to main content

Mechanism and Distribution of glmS Ribozymes

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

Among the nine classes of ribozymes that have been experimentally validated to date is the metabolite-responsive self-cleaving ribozyme called glmS. This RNA is almost exclusively located in the 5′-untranslated region of bacterial mRNAs that code for the production of GlmS proteins, which catalyze the synthesis of the aminosugar glucosamine-6-phosphate (GlcN6P). Each glmS ribozyme forms a conserved catalytic core that selectively binds GlcN6P and uses this metabolite as a cofactor to promote ribozyme self-cleavage. Metabolite-induced self-cleavage results in down-regulation of glmS gene expression, and thus the ribozyme functions as a key riboswitch component to permit feedback regulation of GlcN6P levels. Representatives of glmS ribozymes also serve as excellent experimental models to elucidate how RNAs fold to recognize small molecule ligands and promote chemical transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandal M, Breaker RR. 2004. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5:451–463.

    Article  PubMed  CAS  Google Scholar 

  2. Breaker RR. 2010. Riboswitches and the RNA World. Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a003566.

  3. Montange RK. Batey RT. 2008. Riboswitches: emerging theme in RNA structure and function. Annu. Rev. Biophys. 37:117–133.

    Article  PubMed  CAS  Google Scholar 

  4. Serganov A, Patel DJ. 2009. Amino acid recognition and gene regulation by riboswitches. Biochim. Biophys. Acta. 1789:592–611.

    PubMed  CAS  Google Scholar 

  5. Zhang J, Lau MW, Ferré-D’Amaré AR. 2010. Ribozymes and riboswitches: modulation of RNA function by small molecules. Biochemistry 49:9123–9131.

    Article  PubMed  CAS  Google Scholar 

  6. Dambach MD, Winkler WC. 2009. Expanding roles for metabolite-sensing regulatory RNAs. Curr. Opin. Microbiol. 12:161–169.

    Article  PubMed  CAS  Google Scholar 

  7. Wachter A. 2010. Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol. 7:67–76.

    Article  PubMed  CAS  Google Scholar 

  8. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. 2004. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286.

    Article  PubMed  CAS  Google Scholar 

  9. Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I et al. 2004. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101:6421–6426.

    Article  PubMed  CAS  Google Scholar 

  10. Barrick JE, Breaker RR. 2007. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 8:R239.

    Article  PubMed  Google Scholar 

  11. McCown PJ, Roth A, Breaker RR. 2011. An expanded collection and refined consensus model of glmS ribozymes. RNA 17:728–736.

    Article  PubMed  CAS  Google Scholar 

  12. Lim J, Grove BC, Roth A, Breaker RR. 2006. Characteristics of ligand recognition by a glmS self-cleaving ribozyme. Angew. Chem. Int. Ed. 45:6689–6693.

    Article  CAS  Google Scholar 

  13. Ferré-D’Amaré AR. 2010. The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA. Q. Rev. Biophys. 43:423–447.

    Google Scholar 

  14. Milewski S. 2002. Glucosamine-6-phosphate synthase – the multi-facets enzyme. Biochim. Biophys. Acta 1597:173–192.

    Article  PubMed  CAS  Google Scholar 

  15. Blount KF, Breaker RR. 2006. Riboswitches as antibacterial drug targets. Nat. Biotechnol. 24:1558–1564.

    Article  PubMed  CAS  Google Scholar 

  16. Lünse CE, Schmidt MS, Wittmann V, Mayer G. 2011. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem. Biol. DOI: 10.1021/cb200016d.

  17. Cochrane JC, Lipchock SV, Smith KD, Strobel SA. 2009. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry 48:3239–3246.

    Article  PubMed  CAS  Google Scholar 

  18. Link KH, Guo L, Breaker RR. 2006. Examination of the structural and functional versatility of glmS ribozymes by using in vitro selection. Nucleic Acids Res. 34:4968–4975.

    Article  PubMed  CAS  Google Scholar 

  19. Klein DJ, Ferré-D’Amaré AR. 2006. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate activation. Science. 313:1752–1756.

    Google Scholar 

  20. Cochrane JC, Lipchock SV, Strobel SA. 2007. Structural investigation of the glmS ribozyme bound to its catalytic cofactor. Chem. Biol. 14:97–105.

    Article  PubMed  CAS  Google Scholar 

  21. Roth A, Nahvi A, Lee M, Jona I, Breaker RR. 2006. Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA 12:607–619.

    Article  PubMed  CAS  Google Scholar 

  22. Blount KF, Puskarz I, Penchovsky R, Breaker RR. 2006. Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol. 3:77–81.

    Article  PubMed  CAS  Google Scholar 

  23. Brooks KM, Hampel KJ. 2009. A rate-limiting conformational step in the catalytic pathway of the glmS ribozyme. Biochemistry 48:5669–5678.

    Article  PubMed  CAS  Google Scholar 

  24. Klawuhn K, Jansen JA, Souchek J, Soukup GA, Soukup JK. 2010. Analysis of metal ion dependence in glmS ribozyme self-cleavage and coenzyme binding. Chem. Biochem. 11:2567–2571.

    CAS  Google Scholar 

  25. McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA. 2005. Ligand requirements for glmS ribozyme self-cleavage. Chem. Biol. 12:1221–1226.

    Article  PubMed  CAS  Google Scholar 

  26. Watson PY, Fedor MJ. 2011. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat. Struct. Mol. Biol. 18:359–363.

    Article  PubMed  CAS  Google Scholar 

  27. Hampel KJ, Tinsley MM. 2006. Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry 45:7861–7871.

    Article  PubMed  CAS  Google Scholar 

  28. Klein DJ, Wilkinson SR, Been MD, Ferré-D’Amaré AR. 2007. Requirement of helix P2.2 and nucleotide G1 for positioning of the cleavage site and cofactor of the glmS ribozyme. J. Mol. Biol. 373:178–189.

    Google Scholar 

  29. Jansen JA, McCarthy TJ, Soukup GA, Soukup JK. 2006. Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat. Struct. Mol. Biol. 13:517–523.

    Article  PubMed  CAS  Google Scholar 

  30. Ferré-D’Amaré AR, Scott WG. 2010. Small self-cleaving ribozymes. Cold Spring Harbor Perspect. Biol. 2:a003574.

    Google Scholar 

  31. Klein DJ, Been MD, Ferré-D’Amaré AR. 2007a. Essential role of an active-site guanine in glmS ribozyme catalysis. J. Am. Chem. Soc. 129:14858–14859.

    Google Scholar 

  32. Banáš P, Walter NG, Šponer J, Otyepka M. 2010. Protonation states of the key active site residues and structural dynamics of glmS riboswitch as revealed by molecular dynamics. J. Phys. Chem. 114:8701–8712.

    Article  Google Scholar 

  33. Xin Y, Hamelberg, D. 2010. Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme. RNA 16:2455–2463.

    Article  PubMed  CAS  Google Scholar 

  34. Breaker RR, Emilsson GM, Lazarev D, Nakamura S, Puskarz IJ, Roth A, Sudarsan N. 2003. A common speed limit for RNA-cleaving ribozymes and deoxyribozymes. RNA 9:949–957.

    Article  PubMed  CAS  Google Scholar 

  35. Emilsson GM, Nakamura S, Roth A, Breaker RR. 2003. Ribozyme speed limits. RNA 9:907–918.

    Article  PubMed  CAS  Google Scholar 

  36. Wilkinson SR, Been MD. 2005. A pseudoknot in the 3′ non-core region of the glmS ribozyme enhances self-cleavage activity. RNA 11:1788–1794.

    Article  PubMed  CAS  Google Scholar 

  37. Belasco JG. 2010. All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat. Rev. Mol. Cell Biol. 11:467–478.

    Article  PubMed  CAS  Google Scholar 

  38. Celesnik H, Deana A, Belasco JG. 2007. Initiation of RNA decay in Escherichia coli by 5’ pyrophosphate removal. Mol. Cell 27:79–90.

    Article  PubMed  CAS  Google Scholar 

  39. Bechhofer DH. 2009. Messenger RNA decay and maturation in Bacillus subtilis. Prog. Mol. Biol. Transl.Sci. 85:231–273.

    Article  PubMed  CAS  Google Scholar 

  40. Condon C, Bechhofer DH. 2011. Regulated RNA stability in the Gram-positives. Curr. Opin. Microbiol. 14:148–154.

    Article  PubMed  CAS  Google Scholar 

  41. Collins JA, Irnov I, Baker S, Winkler WC. 2007. Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev. 21:3356–3368.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the members of the Breaker lab for helpful comments and advice. P.M. is supported by the NIH Training Grant T32GM007499. This work is supported in the Breaker lab by the NIH Grant PO1 GM022778-34 and by the Howard Hughes Medical Institute. R.R.B. is a Howard Hughes Medical Institute Investigator. Research on the glmS ribozyme in the Winkler lab was supported by the University of Texas Southwestern Medical Center Endowed Scholars Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald R. Breaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

McCown, P.J., Winkler, W.C., Breaker, R.R. (2012). Mechanism and Distribution of glmS Ribozymes. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics