Skip to main content
Book cover

Ribozymes pp 395–418Cite as

Developing Fluorogenic RNA-Cleaving DNAzymes for Biosensing Applications

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

Deoxyribozymes (or DNAzymes) are single-stranded DNA molecules that have the ability to catalyze a chemical reaction. Currently, DNAzymes have to be isolated from random-sequence DNA libraries by a process known as in vitro selection (IVS) because no naturally occurring DNAzyme has been discovered. Several IVS studies have led to the isolation of many RNA-cleaving DNAzymes (RNase DNAzymes), which catalyze the transesterification of a phosphodiester linkage in an RNA substrate, resulting in its cleavage. An RNase DNAzyme and its substrate can be modified with a pair of donor and acceptor fluorophores (or a fluorophore and quencher pair) to create a fluorescence-signaling system (a signaling DNAzyme) where the RNA-cleaving activity of the DNAzyme is reported through the generation of a fluorescent signal. A signaling DNAzyme can be further coupled with an aptamer (a target-binding nucleic acid sequence) to generate a fluorogenic aptazyme in which the aptamer–target interaction confers an allosteric control of the coupled RNA-cleaving and fluorescence-signaling activity of the DNAzyme. Fluorogenic aptazymes can be exploited as valuable molecular tools for biosensing applications. In this chapter, we provide both a detailed description of methods for isolation of signaling DNAzymes by IVS and general approaches for rational engineering of fluorogenic aptazymes for target detection.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., and Cech, T. R. (1982) Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena, Cell 31, 147–157.

    Article  PubMed  CAS  Google Scholar 

  2. Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., and Altman, S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme, Cell 35, 849–857.

    Article  PubMed  CAS  Google Scholar 

  3. Breaker, R. R., and Joyce, G. F. (1994) A DNA enzyme that cleaves RNA, Chem Biol 1, 223–229.

    Article  PubMed  CAS  Google Scholar 

  4. Cuenoud, B., and Szostak, J. W. (1995) A DNA metalloenzyme with DNA ligase activity, Nature 375, 611–614.

    Article  PubMed  CAS  Google Scholar 

  5. Li, Y., and Sen, D. (1996) A catalytic DNA for porphyrin metallation, Nat Struct Biol 3, 743–747.

    Article  PubMed  CAS  Google Scholar 

  6. Breaker, R. R., and Joyce, G. F. (1995) A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity, Chem Biol 2, 655–660.

    Article  PubMed  CAS  Google Scholar 

  7. Carmi, N., Shultz, L. A., and Breaker, R. R. (1996) In vitro selection of self-cleaving DNAs, Chem Biol 3, 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  8. Tuerk, C., and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  9. Robertson, D. L., and Joyce, G. F. (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA, Nature 344, 467–468.

    Article  PubMed  CAS  Google Scholar 

  10. Ellington, A. D., and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands, Nature 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  11. Li, Y., and Breaker, R. R. (1999) Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2′-Hydroxyl Group, J Am Chem Soc 121, 5364–5372.

    Article  CAS  Google Scholar 

  12. Smith, R. M., and Hansen, D. E. (1998) The pH-Rate Profile for the Hydrolysis of a Peptide Bond, J Am Chem Soc 120, 8910–8913.

    Article  CAS  Google Scholar 

  13. Achenbach, J. C., Chiuman, W., Cruz, R. P. G., and Li, Y. (2004) DNAzymes: From Creation In Vitro to Application In Vivo, Curr Pharm Biotech 5, 321–336.

    Article  CAS  Google Scholar 

  14. Navani, N. K., and Li, Y. (2006) Nucleic acid aptamers and enzymes as sensors, Curr Opin Chem Biol 10, 272–281.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, J., Cao, Z., and Lu, Y. (2009) Functional nucleic acid sensors, Chem Rev 109, 1948–1998.

    Article  PubMed  CAS  Google Scholar 

  16. Silverman, S. K. (2008) Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects, Chem Commun 34673485.

    Google Scholar 

  17. Baum, D., and Silverman, S. (2008) Deoxyribozymes: useful DNA catalysts in vitro and in vivo, Cell Mol Life Sci 65, 2156–2174.

    Article  PubMed  CAS  Google Scholar 

  18. Schlosser, K., and Li, Y. (2009) Biologically Inspired Synthetic Enzymes Made from DNA, Chem Biol 16, 311–322.

    Article  PubMed  CAS  Google Scholar 

  19. Silverman, S. K. (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA, Nucleic Acids Res 33, 6151–6163.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, J., Brown, A. K., Meng, X., Cropek, D. M., Istok, J. D., Watson, D. B., and Lu, Y. (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity, Proc Natl Acad Sci USA 104, 2056–2061.

    Article  PubMed  CAS  Google Scholar 

  21. Liu, J., and Lu, Y. (2003) Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers, Anal Chem 75, 6666–6672.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, J., and Lu, Y. (2006) Fluorescent DNAzyme biosensors for metal ions based on catalytic molecular beacons, Methods Mol Biol 335, 275–288.

    PubMed  CAS  Google Scholar 

  23. Liu, J., and Lu, Y. (2007) A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity, J Am Chem Soc 129, 9838–9839.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, J., and Lu, Y. (2007) Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity, Angew Chem Int Ed 46, 7587–7590.

    Article  CAS  Google Scholar 

  25. Liu, Z., Mei, S. H., Brennan, J. D., and Li, Y. (2003) Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences, J Am Chem Soc 125, 7539–7545.

    Article  PubMed  CAS  Google Scholar 

  26. Mei, S. H., Liu, Z., Brennan, J. D., and Li, Y. (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling, J Am Chem Soc 125, 412–420.

    Article  PubMed  CAS  Google Scholar 

  27. Chiuman, W., and Li, Y. (2007) Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates, Nucleic Acids Res 35, 401–405.

    Article  PubMed  CAS  Google Scholar 

  28. Rupcich, N., Chiuman, W., Nutiu, R., Mei, S., Flora, K. K., Li, Y., and Brennan, J. D. (2006) Quenching of fluorophore-labeled DNA oligonucleotides by divalent metal ions: implications for selection, design, and applications of signaling aptamers and signaling deoxyribozymes, J Am Chem Soc 128, 780–790.

    Article  PubMed  CAS  Google Scholar 

  29. Kandadai, S. A., and Li, Y. (2005) Characterization of a catalytically efficient acidic RNA-cleaving deoxyribozyme, Nucleic Acids Res 33, 7164–7175.

    Article  PubMed  CAS  Google Scholar 

  30. Chiuman, W., and Li, Y. (2006) Revitalization of six abandoned catalytic DNA species reveals a common three-way junction framework and diverse catalytic cores, J Mol Biol 357, 748–754.

    Article  PubMed  CAS  Google Scholar 

  31. Chiuman, W., and Li, Y. (2006) Evolution of high-branching deoxyribozymes from a catalytic DNA with a three-way junction, Chem Biol 13, 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  32. Ali, M. M., Kandadai, S. A., and Li, Y. (2007) Characterization of pH3DZ1-an RNA cleaving deoxyribozyme with optimal activity at pH 3, Can J Chem 85, 261–273.

    Article  CAS  Google Scholar 

  33. Chiuman, W., and Li, Y. (2007) Simple fluorescent sensors engineered with catalytic DNA ‘MgZ’ based on a non-classic allosteric design, PLoS One 2, e1224.

    Article  PubMed  Google Scholar 

  34. Shen, Y., Brennan, J. D., and Li, Y. (2005) Characterizing the secondary structure and identifying functionally essential nucleotides of pH6DZ1, a fluorescence-signaling and RNA-cleaving deoxyribozyme, Biochemistry 44, 12066–12076.

    Article  PubMed  CAS  Google Scholar 

  35. Kandadai, S. A., Mok, W. W., Ali, M. M., and Li, Y. (2009) Characterization of an RNA-cleaving deoxyribozyme with optimal activity at pH 5, Biochemistry 48, 7383–7391.

    Article  PubMed  CAS  Google Scholar 

  36. Kandadai, S. A., Chiuman, W., and Li, Y. (2006) Phosphoester-transfer mechanism of an RNA-cleaving acidic deoxyribozyme revealed by radioactivity tracking and enzymatic digestion, Chem Commun, 2359–2361.

    Google Scholar 

  37. Shen, Y., Chiuman, W., Brennan, J. D., and Li, Y. (2006) Catalysis and rational engineering of trans-acting pH6DZ1, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure, Chembiochem 7, 1343–1348.

    Article  PubMed  CAS  Google Scholar 

  38. Achenbach, J. C., Nutiu, R., and Li, Y. (2005) Structure-switching allosteric deoxyribozymes, Analytica Chimica Acta 534, 41–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The DNAzyme and aptamer work in the Li Lab has been supported by the Canadian Institutes of Health Research (CIHR), Natural Science and Engineering Research Council of Canada (NSERC), and SENTINEL Bioactive Paper Network. YL holds a Canada research chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ali, M.M., Aguirre, S.D., Mok, W.W.K., Li, Y. (2012). Developing Fluorogenic RNA-Cleaving DNAzymes for Biosensing Applications. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_25

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics