Skip to main content
Book cover

Ribozymes pp 215–226Cite as

Probing Functions of the Ribosomal Peptidyl Transferase Center by Nucleotide Analog Interference

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

The ribosome is a huge ribonucleoprotein complex in charge of protein synthesis in every living cell. The catalytic center of this dynamic molecular machine is entirely built up of 23S ribosomal RNA and therefore the ribosome can be referred to as the largest natural ribozyme known so far. The in vitro reconstitution approach of large ribosomal subunits described herein allows nucleotide analog interference studies to be performed. The approach is based on the site-specific introduction of nonnatural nucleotide analogs into the peptidyl transferase center, the active site located on the interface side of the large ribosomal subunit. This method combined with standard tests of ribosomal functions broadens the biochemical repertoire to investigate the mechanism of diverse aspects of translation considerably and adds another layer of molecular information on top of structural and mutational studies of the ribosome.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Polacek, N., and Mankin, A. S. (2005) The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Crit. Rev. Biochem. Mol. 40, 285–311.

    Article  CAS  Google Scholar 

  2. Wilson, D. N., Blaha, G., Connell, S. R., Ivanov, P. V., Jenke, H., Stelzl, U., Teraoka, Y., and Nierhaus, K. H. (2002) Protein synthesis at atomic resolution: mechanistics of translation in the light of highly resolved structures for the ribosome. Curr. Protein Pept. Sci. 3, 1–53.

    Article  PubMed  CAS  Google Scholar 

  3. Katunin, V. I., Muth, G. W., Strobel, S. A., Wintermeyer, W., and Rodnina, M. V. (2002) Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346.

    Article  PubMed  CAS  Google Scholar 

  4. Szaflarski, W., Vesper, O., Teraoka, Y., Plitta, B., Wilson, D. N., and Nierhaus, K. H. (2008) New features of the ribosome and ribosomal inhibitors: non-enzymatic recycling, misreading and back-translocation. J. Mol. Biol. 380, 193–205.

    Article  PubMed  CAS  Google Scholar 

  5. Zaher, H. S., and Green, R. (2009) Fidelity at the molecular level: lessons from protein synthesis. Cell 136, 746–762.

    Article  PubMed  CAS  Google Scholar 

  6. Wohlgemuth, I., Pohl, C., and Rodnina, M. V. (2010) Optimization of speed and accuracy of decoding in translation. EMBO J. 29, 3701–3709.

    Article  PubMed  CAS  Google Scholar 

  7. Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930.

    Article  PubMed  CAS  Google Scholar 

  8. Chirkova, A., Erlacher, M. D., Micura, R., and Polacek, N. (2010) Chemically engineered ribosomes: A new frontier in synthetic biology. Curr. Org. Chem. 14, 148–161.

    Article  CAS  Google Scholar 

  9. Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920.

    Article  PubMed  CAS  Google Scholar 

  10. Erlacher, M. D., and Polacek, N. (2008) Ribosomal catalysis: The evolution of mechanistic concepts for peptide bond formation and peptidyl-tRNA hydrolysis. RNA Biol. 5, 5–12.

    Article  PubMed  CAS  Google Scholar 

  11. Erlacher, M. D., Lang, K., Shankaran, N., Wotzel, B., Huttenhofer, A., Micura, R., Mankin, A. S., and Polacek, N. (2005) Chemical engineering of the peptidyl transferase center reveals an important role of the 2′-hydroxyl group of A2451. Nucleic Acids Res. 33, 1618–1627.

    Article  PubMed  CAS  Google Scholar 

  12. Erlacher, M. D., Chirkova, A., Voegele, P., and Polacek, N. (2011) Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis. Nature Prot. 6, 580–592.

    Google Scholar 

  13. Erlacher, M. D., Lang, K., Wotzel, B., Rieder, R., Micura, R., and Polacek, N. (2006) Efficient ribosomal peptidyl transfer critically relies on the presence of the ribose 2′-OH at A2451 of 23S rRNA. J. Am. Chem. Soc. 128, 4453–4459.

    Article  PubMed  CAS  Google Scholar 

  14. Lang, K., Erlacher, M., Wilson, D. N., Micura, R., and Polacek, N. (2008) The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Chem. Biol. 15, 485–492.

    Article  PubMed  CAS  Google Scholar 

  15. Amort, M., Wotzel, B., Bakowska-Zywicka, K., Erlacher, M. D., Micura, R., and Polacek, N. (2007) An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Nucleic Acids Res. 35, 5130–5140.

    Article  PubMed  CAS  Google Scholar 

  16. Clementi, N., Chirkova, A., Puffer, B., Micura, R., and Polacek, N. (2010) Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation. Nat. Chem. Biol. 6, 344–351.

    Article  PubMed  CAS  Google Scholar 

  17. Clementi, N., and Polacek, N. (2010) Ribosome-associated GTPases: The role of RNA for GTPase activation. RNA Biol. 7, 521–527.

    Article  PubMed  CAS  Google Scholar 

  18. Chirkova, A., Erlacher, M. D., Clementi, N., Zywicki, M., Aigner, M., and Polacek, N. (2010) The role of the universally conserved A2450-C2063 base pair in the ribosomal peptidyl transferase center. Nucleic Acids Res. 38, 4844–4855.

    Article  PubMed  CAS  Google Scholar 

  19. Sanbonmatsu, K. Y. (2006) Alignment/misalignment hypothesis for tRNA selection by the ribosome. Biochimie 88, 1075–1089.

    Article  PubMed  CAS  Google Scholar 

  20. Wachowius, F., and Hobartner, C. (2010) Chemical RNA modifications for studies of RNA structure and dynamics. Chembiochem 11, 469–480.

    Article  PubMed  CAS  Google Scholar 

  21. Micura, R. (2002) Small interfering RNAs and their chemical synthesis. Angew. Chem. Int. Ed. Engl. 41, 2265–2269.

    Article  PubMed  CAS  Google Scholar 

  22. Bommer, U. A., Burkhardt, N., Jünemann, R., Spahn, C. M. T., Triana-Alonso, F. J., and Nierhaus, K. H. (1997) Ribosomes and polysomes. In: Graham, J., and Rickwood, D., (eds) Subcellular fractionation: A practical approach, IRL Press, Washington DC.

    Google Scholar 

  23. Khaitovich, P., Tenson, T., Kloss, P., and Mankin, A. S. (1999) Reconstitution of functionally active Thermus aquaticus large ribosomal subunits with in vitro-transcribed rRNA. Biochemistry 38, 1780–1788.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ronald Micura and his team for a fruitful collaboration and for continuously providing top-quality synthetic RNA oligos. Prabhavathi Fernandes from Cempra Pharmaceuticals (Chapel Hill, NC, USA) is acknowledged for providing solithromycin. Nina Clementi and Anna Chirkova are thanked for experimental advice and comments on the manuscript. In addition we are grateful for constant support from Alexander Mankin, Knud Nierhaus, Wolfgang Piendl, and Alexander Hüttenhofer. Work in our laboratory is funded by grants from the Austrian Science Foundation FWF (Y315 to N.P. and P22658-B12 to M. E.) and the Austrian Ministry of Science and Research (GenAU project consortium “non-coding RNAs” D-110420-012-012 to N.P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Polacek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Erlacher, M.D., Polacek, N. (2012). Probing Functions of the Ribosomal Peptidyl Transferase Center by Nucleotide Analog Interference. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics