Skip to main content

Preparation and Characterization of Biocompatible Chitosan Nanoparticles for Targeted Brain Delivery of Peptides

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 846))

Abstract

Here, we describe a nanocarrier system that can transfer chitosan nanoparticles loaded with either small peptides such as the caspase inhibitor Z-DEVD-FMK or a large peptide like basic fibroblast growth factor across the blood–brain barrier. The nanoparticles are selectively directed to the brain and are not measurably taken up by liver and spleen. Intravital fluorescent microscopy provides an opportunity to study the penetration kinetics of nanoparticles loaded with fluorescent agents such as Nile red, and has demonstrated that this nanomedicine formulation is rapidly transported across the blood–brain barrier.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Abbott, N. J., Ronnback, L., and Hansson, E. (2006) Astrocyte-endothelial interactions at the blood-brain barrier, Nature Reviews Neuroscience 7, 41–53.

    Article  PubMed  CAS  Google Scholar 

  2. Pardridge, W. M. (1998) CNS drug design based on principles of blood-brain barrier transport, J Neurochem 70, 1781–92.

    Article  PubMed  CAS  Google Scholar 

  3. Bickel, U., Yoshikawa, T., and Pardridge, W. M. (2001) Delivery of peptides and proteins through the blood-brain barrier, Adv Drug Deliv Rev 46, 247–79.

    Article  PubMed  CAS  Google Scholar 

  4. Pardridge, W. M. (2002) Drug and gene delivery to the brain: the vascular route, Neuron 36, 555–8.

    Article  PubMed  CAS  Google Scholar 

  5. Huwyler, J., and Pardridge, W. M. (1998) Examination of blood-brain barrier transferrin receptor by confocal fluorescent microscopy of unfixed isolated rat brain capillaries, J Neurochem 70, 883–6.

    Article  PubMed  CAS  Google Scholar 

  6. Pardridge, W. M., Wu, D., and Sakane, T. (1998) Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration, Pharm Res 15, 576–82.

    Article  PubMed  CAS  Google Scholar 

  7. Karatas, H., Aktas, Y., Gursoy-Ozdemir, Y., Bodur, E., Yemisci, M., Caban, S., Vural, A., Pinarbasli, O., Capan, Y., Fernandez-Megia, E., Novoa-Carballal, R., Riguera, R., Andrieux, K., Couvreur, P., and Dalkara, T. (2009) A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection, J Neurosci 29, 13761–9.

    Article  PubMed  CAS  Google Scholar 

  8. Chang, J., Jallouli, Y., Kroubi, M., Yuan, X. B., Feng, W., Kang, C. S., Pu, P. Y., and Betbeder, D. (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier, Int J Pharm 379, 285–92.

    Article  PubMed  CAS  Google Scholar 

  9. Skarlatos, S., Yoshikawa, T., and Pardridge, W. M. (1995) Transport of [125I]transferrin through the rat blood-brain barrier, Brain Res 683, 164–71.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, H. J., Engelhardt, B., Lesley, J., Bickel, U., and Pardridge, W. M. (2000) Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse, J Pharmacol Exp Ther 292, 1048–52.

    PubMed  CAS  Google Scholar 

  11. Jefferies, W. A., Brandon, M. R., Hunt, S. V., Williams, A. F., Gatter, K. C., and Mason, D. Y. (1984) Transferrin receptor on endothelium of brain capillaries, Nature 312, 162–3.

    Article  PubMed  CAS  Google Scholar 

  12. Pardridge, W. M., Buciak, J. L., and Friden, P. M. (1991) Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo, J Pharmacol Exp Ther 259, 66–70.

    PubMed  CAS  Google Scholar 

  13. Rawat, M., Singh, D., and Saraf, S. (2006) Nanocarriers: promising vehicle for bioactive drugs, Biol Pharm Bull 29, 1790–8.

    Article  PubMed  CAS  Google Scholar 

  14. Peracchia, M. T., Fattal, E., Desmaele, D., Besnard, M., Noel, J. P., Gomis, J. M., Appel, M., d’Angelo, J., and Couvreur, P. (1999). Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60, 121–8.

    Article  PubMed  CAS  Google Scholar 

  15. Prabaharan, M. (2008) Review paper: chitosan derivatives as promising materials for controlled drug delivery, J Biomater Appl 23, 5–36.

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, C., Vila-Jato, J. L., and Alonso, M. J. (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles, Pharm Res 16, 1576–81.

    Article  PubMed  CAS  Google Scholar 

  17. Pan, Y., Li, Y. J., Zhao, H. Y., Zheng, J. M., Xu, H., Wei, G., Hao, J. S., and Cui, F. D. (2002) Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo, Int J Pharm 249, 139–47.

    Article  PubMed  CAS  Google Scholar 

  18. Vila, A., Sanchez, A., Tobio, M., Calvo, P., and Alonso, M. J. (2002) Design of biodegradable particles for protein delivery, J Control Release 78, 15–24.

    Article  PubMed  CAS  Google Scholar 

  19. Datta, S. R., Brunet, A., and Greenberg, M. E. (1999) Cellular survival: a play in three Akts, Genes Dev 13, 2905–27.

    Article  PubMed  CAS  Google Scholar 

  20. Hara, H., Friedlander, R. M., Gagliardini, V., Ayata, C., Fink, K., Huang, Z. H., ShimizuSasamata, M., Yuan, J. Y., and Moskowitz, M. A. (1997) Inhibition of interleukin 1 beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage, Proceedings of the National Academy of Sciences of the United States of America 94, 2007–12.

    Article  PubMed  CAS  Google Scholar 

  21. Schulz, J. B., Weller, M., and Moskowitz, M. A. (1999) Caspases as treatment targets in stroke and neurodegenerative diseases, Annals of Neurology 45, 421–29.

    Article  PubMed  CAS  Google Scholar 

  22. Chen, J., Nagayama, T., Jin, K. L., Stetler, R. A., Zhu, R. L., Graham, S. H., and Simon, R. P. (1998) Induction of caspase-3-like protease may mediate delayed neuronal death in the hippocampus after transient cerebral ischemia, Journal of Neuroscience 18, 4914–28.

    PubMed  CAS  Google Scholar 

  23. Thornberry, N. A., and Lazebnik, Y. (1998) Caspases: Enemies within, Science 281, 1312–16.

    Article  PubMed  CAS  Google Scholar 

  24. Aktas, Y., Yemisci, M., Andrieux, K., Gursoy, R. N., Alonso, M. J., Fernandez-Megia, E., Novoa-Carballal, R., Quinoa, E., Riguera, R., Sargon, M. F., Celik, H. H., Demir, A. S., Hincal, A. A., Dalkara, T., Capan, Y., and Couvreur, P. (2005) Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26, Bioconjugate Chemistry 16, 1503–11.

    Article  PubMed  CAS  Google Scholar 

  25. Illum, L. (1998) Chitosan and its use as a pharmaceutical excipient, Pharm Res 15, 1326–31.

    Article  PubMed  CAS  Google Scholar 

  26. Caban, S., Yemisci, M., Gursoy-Ozdemir, Y., Fernandez-Megia, E., Novoa-Carballal, R., Riguera, R., Andrieux, K., Couvreur, P., Capan, Y., and Dalkara, T. (2010) in “AAPS Annual Meeting and Exposition”, New Orleans, Louisiana, USA.

    Google Scholar 

  27. Ma, J., Qiu, J., Hirt, L., Dalkara, T., and Moskowitz, M. A. (2001) Synergistic protective effect of caspase inhibitors and bFGF against brain injury induced by transient focal ischaemia, Br J Pharmacol 133, 345–50.

    Article  PubMed  CAS  Google Scholar 

  28. Cho, Y., Shi, R., and Ben Borgens, R. (2010) Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury, J Biol Eng 4, 2.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank all of our colleagues including our collaborators in Spain (Eduardo Fernandez-Megia, Ramon Novoa-Carballal, and Ricardo Riguera from Universidad de Santiago de Compostela) for their important contributions to the development of the nanoparticles used in studies cited in this chapter. Dr. Turgay Dalkara’s work is supported by the Turkish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Dalkara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Caban, S., Capan, Y., Couvreur, P., Dalkara, T. (2012). Preparation and Characterization of Biocompatible Chitosan Nanoparticles for Targeted Brain Delivery of Peptides. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 846. Humana Press. https://doi.org/10.1007/978-1-61779-536-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-536-7_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-535-0

  • Online ISBN: 978-1-61779-536-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics