Skip to main content

Rodent Retinal Ganglion Cell Cultures

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 846))

Abstract

Central neurons lose the ability for axonal regrowth during development and typically do not regenerate their axons following axotomy once they become mature unless given a growth-permissive environment, for example, a peripheral nerve graft. Retinal ganglion cells (RGCs) of the optic nerve represent a highly useful cell model for the study of neurotrophic factor responsiveness, although the presence of nonneuronal cells in the retina makes it difficult to interpret the direct effects of tested factors on RGCs. Cultures of purified RGCs thus represent an excellent tool for the study of optic nerve cell trophic responsiveness, in terms of both survival and axonal regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. David S, and Aguayo AJ (1981) Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science 214, 931–933

    Article  PubMed  CAS  Google Scholar 

  2. Gervasi NM, Kwok JC, and Fawcett JW (2008) Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regen Med 3, 907–923

    Article  PubMed  Google Scholar 

  3. Mansour-Robaey S, Clarke DB, Wang YC, Bray GM, and Aguayo AJ (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 91, 1,632–1,636

    Article  PubMed  CAS  Google Scholar 

  4. Mey J, and Thanos S (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Res 602, 304–317

    Article  PubMed  CAS  Google Scholar 

  5. Peinado-Ramon P, Salvador M, Villegas-Perez MP, and Vidal-Sanz M (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Invest Ophthalmol Vis Sci 37, 489–500

    PubMed  CAS  Google Scholar 

  6. Clarke DB, Bray GM, and Aguayo AJ (1998) Prolonged administration of NT-4/5 fails to rescue most axotomized retinal ganglion cells in adult rats. Vision Res 38, 1,517–1,524

    Article  PubMed  CAS  Google Scholar 

  7. Carmignoto G, Maffei L, Candeo P, Canella R, and Comelli C (1989) Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. J Neurosci 9, 1,263–1,272

    PubMed  CAS  Google Scholar 

  8. Lenzi L, Coassin M, Lambiase A, Bonini S, Amendola T, and Aloe L (2005) Effect of exogenous administration of nerve growth factor in the retina of rats with inherited retinitis pigmentosa. Vision Res 45, 1,491–1,500

    Article  PubMed  CAS  Google Scholar 

  9. Cui Q, Yip HK, Zhao RC, So KF, and Harvey AR (2003) Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons. Mol Cell Neurosci 22, 49–61

    Article  PubMed  CAS  Google Scholar 

  10. Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J, et al (2006) AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 13, 1,328–1,341

    Article  PubMed  CAS  Google Scholar 

  11. Rios-Munoz W, Soto I, Duprey-Diaz MV, Blagburn J, and Blanco RE (2005) Fibroblast growth factor 2 applied to the optic nerve after axotomy increases Bcl-2 and decreases Bax in ganglion cells by activating the extracellular signal-regulated kinase signaling pathway. J Neurochem 93, 1,422–1,433

    Article  PubMed  CAS  Google Scholar 

  12. Unoki K, and LaVail MM (1994) Protection of the rat retina from ischemic injury by brain-derived neurotrophic factor, ciliary neurotrophic factor, and basic fibroblast growth factor. Invest Ophthalmol Vis Sci 35, 907–915

    PubMed  CAS  Google Scholar 

  13. Ma CHM, and Taylor JSH (2010) Trophic responsiveness of purified postnatal and adult rat retinal ganglion cells. Cell Tissue Res 339, 297–310

    Article  PubMed  Google Scholar 

  14. Barres BA, Silverstein BE, Corey DP, and Chun LL (1988) Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1, 791–803

    Article  PubMed  CAS  Google Scholar 

  15. Zhang XM, Li Liu DT, Chiang SW, Choy KW, Pang CP, Lam DS, et al (2010) Immunopanning purification and long-term culture of human retinal ganglion cells. Mol Vis 16, 2,867–2,872

    PubMed  Google Scholar 

  16. Bader DR, MacLeish PR, and Schwartz EA (1978) Responses to light of solitary rod photoreceptors isolated from tiger salamander retina. Proc Natl Acad Sci USA 75, 3,507–3,511

    Article  PubMed  CAS  Google Scholar 

  17. Huettner JE, and Baughman RW (1986) Primary culture of identified neurons from the visual cortex of postnatal rats. J Neurosci 6, 3,044–3,060

    PubMed  CAS  Google Scholar 

  18. Wysocki LJ, and Sato VL (1978) “Panning” for lymphocytes: a method for cell selection. Proc Natl Acad Sci USA 75, 2,844–2,848

    Article  PubMed  CAS  Google Scholar 

  19. Brewer GJ, Torricelli JR, Evege EK, and Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35, 567–576

    Article  PubMed  CAS  Google Scholar 

  20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65, 55–63

    Article  PubMed  CAS  Google Scholar 

  21. Manthorpe M, Fagnani R, Skaper SD, and Varon S (1986) An automated colorimetric microassay for neuronotrophic factors. Dev Brain Res 25, 191–198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Skaper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Skaper, S.D. (2012). Rodent Retinal Ganglion Cell Cultures. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 846. Humana Press. https://doi.org/10.1007/978-1-61779-536-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-536-7_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-535-0

  • Online ISBN: 978-1-61779-536-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics