Skip to main content

Functional Circuitry Analysis in Rodents Using Neurotoxins/Immunotoxins

  • Protocol
  • First Online:
Controlled Genetic Manipulations

Part of the book series: Neuromethods ((NM,volume 65))

Abstract

Immunotoxin cell targeting is a transgenic animal technology used to eliminate specific cell types from a complex neural circuitry by using cytotoxic activity of recombinant immunotoxins, which are composed of an antibody variable region fused to bacterial toxin fragments. This technology provides a useful approach for studying the neural circuitry mechanism underlying a variety of brain functions. The present chapter provides a detailed experimental strategy for immunotoxin cell targeting and its application to neural circuitry analysis, in particular focusing on the basal ganglia circuitry, which is implicated in the control of motor functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlson NR (2009) Methods and strategies of research. In Physiology of Behavior, 10th edn., Chapter 5. Allyn and Bacon, Boston, pp. 134–168.

    Google Scholar 

  2. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980.

    Article  PubMed  CAS  Google Scholar 

  3. Jonsson G, Hallman H, Ponzio F, Ross S (1981) DSP4 (N-(2-chloroethyl)- N-ethyl-2-bromobenzylamine): a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol 72:173–188.

    Article  PubMed  CAS  Google Scholar 

  4. Kobayashi K, Morita S, Sawada H, Mizuguchi T, Yamada K, Nagatsu I, Fujita K, Kreitman RJ, Pastan I, Nagatsu T (1995) Immunotoxin-mediated conditional disruption of specific neurons in transgenic mice. Proc Natl Acad Sci USA 92:1132–1136.

    Article  Google Scholar 

  5. Kobayashi K, Pastan I, Nagatsu T (1997) Controlled genetic ablation by immunotoxin-mediated cell targeting. In: Houdebine LM (ed) Transgenic Animals: Generation and Use. Harwood Academic Publishers, Amsterdam, pp. 331–336.

    Google Scholar 

  6. Kobayashi K (2007) Controlled cell targeting system to study the brain neural circuitry. Neurosci Res 58:118–123.

    Article  PubMed  CAS  Google Scholar 

  7. Chaudhary VK, Queen C, Junghans RP, Waldmann TA, FitzGerald DJ, Pastan I (1989) A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin. Nature 339:394–397.

    Article  PubMed  CAS  Google Scholar 

  8. Batra JK, FitzGerald D, Gately M, Chaudhary VK, Pastan I (1990) Anti-Tac(Fv)-PE40, a single chain antibody Pseudomonas fusion protein directed at interleukin 2 receptor bearing cells. J Biol Chem 265:15198–15202.

    PubMed  CAS  Google Scholar 

  9. Kreitman RJ, Bailon P, Chaudhary VK, FitzGerald DJ, Pastan I (1994) Recombinant immunotoxins containing anti-Tac(Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an interleukin-2 receptor-bearing human carcinoma. Blood 83:426–434.

    PubMed  CAS  Google Scholar 

  10. Kobayashi T, Kida Y, Kaneko T, Pastan I, Kobayashi K (2001) Efficient ablation by immunotoxin-mediated cell targeting of the cell types that express human interleukin-2 receptor depending on the internal ribosome entry site. J Gene Med 3:505–510.

    Article  PubMed  CAS  Google Scholar 

  11. Furler S, Paterna J-C, Weibel M, Büeler H (2001) Recombinant AAV vectors containing the foot and mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia nigra neurons. Gene Ther 8:864–873.

    Article  PubMed  CAS  Google Scholar 

  12. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DAA (2004) Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotech 22:589–594.

    Article  CAS  Google Scholar 

  13. Heintz N (2001) Bac to the future: The use of bac transgenic mice for neuroscience research. Nat Rev Neurosci 2:861–870.

    Article  PubMed  CAS  Google Scholar 

  14. Yang XW, Gong S (2005) An overview on the generation of BAC transgenic mice for neuroscience research. Curr Protoc Neurosci Chapter 5:Unit 5.20.

    Google Scholar 

  15. Sano H, Yasoshima Y, Matsushita N, Kaneko T, Kohno K, Pastan I, Kobayashi K (2003) Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J Neurosci 23:9078–9088.

    PubMed  CAS  Google Scholar 

  16. Watanabe D, Inokawa H, Hashimoto K, Suzuki N, Kano M, Shigemoto R, Hirano T, Toyama K, Kaneko S, Yokoi M, Moriyoshi K, Suzuki M, Kobayashi K, Nagatsu T, Pastan I, Nakanishi S (1998) Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95:17–27.

    Article  PubMed  CAS  Google Scholar 

  17. Yasoshima Y, Kai N, Yoshida S, Shiosaka S, Koyama Y, Kayama Y, Kobayashi K (2005) Subthalamic neurons coordinate basal ganglia function through differential neural pathways. J Neurosci 25:7743–7753.

    Article  PubMed  CAS  Google Scholar 

  18. Matsusaka T, Xin J, Niwa S, Kobayashi K, Akatsuka A, Hashizume H, Wang Q, Pastan I, Fogo BA, Ichikawa I (2005) Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. J Am Soc Nephrol 16:1013–1023.

    Article  PubMed  CAS  Google Scholar 

  19. Franklin KBJ, Paxinos G (2007) The Mouse Brain in Stereotaxic Coordinates, 3rd ed. Elsevier Academic Press, San Diego. http://www.elsevierdirect.com/product.jsp?isbn=9780123694607.

    Google Scholar 

  20. Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates, 6th ed. Elsevier Academic Press, San Diego. http://www.elsevierdirect.com/product.jsp?isbn=9780125476126&dmnum=CWS1 -->

    Google Scholar 

  21. Sawada H, Nishii K, Suzuki T, Hasegawa K, Hata T, Nagatsu I, Kreitman RJ, Pastan I, Nagatsu T, Kobayashi K (1998) Autonomic neuropathy in transgenic mice caused by immunotoxin targeting of the peripheral nervous system. J Neurosci Res 51:162–173.

    Article  PubMed  CAS  Google Scholar 

  22. Kaneko S, Hikida T, Watanabe D, Ichinose H, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S (2000) Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 289:633–637.

    Article  PubMed  CAS  Google Scholar 

  23. Hikida T, Kaneko S, Isobe T, Kitabatake Y, Watanabe D, Pastan I, Nakanishi S (2001) Increased sensitivity to cocaine by cholinergic cell ablation in nucleus accumbens. Proc. Natl. Acad. Sci. USA 98:13351–13354.

    Article  PubMed  CAS  Google Scholar 

  24. Hikida T, Kitabatake Y, Pastan I, Nakanishi S (2003) Acetylcholine enhancement in the nucleus accumbens prevents addictive behaviors of cocaine and morphine. Proc Natl Acad Sci USA 100:6169–6173.

    Article  Google Scholar 

  25. Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271.

    Article  PubMed  CAS  Google Scholar 

  26. DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285.

    Article  PubMed  CAS  Google Scholar 

  27. Gerfen CR, Wilson CJ (1996) The basal ganglia. In Swanson LW, Björklund A, Hökfelt T (eds) Handbook of Chemical Anatomy, Vol. 12, Elsevier, Amsterdam, pp 37–468.

    Google Scholar 

  28. Gerfen CR, Engber TM, Mahan LC, Susei Z, Chase TN, Monsma FJ Jr, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432.

    Article  PubMed  CAS  Google Scholar 

  29. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535.

    Article  PubMed  CAS  Google Scholar 

  30. Kawaguchi Y (1997) Neostriatal cell subtypes and their functional roles. Neurosci Res 27:1–8.

    Article  PubMed  CAS  Google Scholar 

  31. Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73:1155–1164.

    Article  PubMed  CAS  Google Scholar 

  32. Gu H, Marth JD, Orban PC, Mossomann H, Rajewsky K (1994) Deletion of a DNA polymerase b gene segment in T cells using cell type-specific gene targeting. Science 265:103–106.

    Article  PubMed  CAS  Google Scholar 

  33. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline responsive promoter. Proc. Natl. Acad. Sci. USA 89:5547–5551.

    Article  PubMed  CAS  Google Scholar 

  34. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268: 1766–1769.

    Article  PubMed  CAS  Google Scholar 

  35. Kato S, Inoue K, Kobayashi K, Yasoshima Y, Miyachi S, Inoue S, Hanawa H, Shimada T, Takada M, Kobayashi K (2007) Efficient gene transfer via retrograde transport in rodent and primate brains using a human immunodeficiency virus type 1-based vector pseudotyped with rabies virus glycoprotein. Hum Gene Ther 18:1141–1152.

    Article  PubMed  CAS  Google Scholar 

  36. Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H, Morimoto K, Shimada T, Takada M, Kobayashi K (2011) A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22: 197–206.

    Google Scholar 

  37. Kato S, Kuramochi M, Kobayashi K, Fukabori R, Okada K, Uchigashima M, Watanabe M, Tsutsui Y, Kobayashi K (2011) Selective neural pathway targeting reveals key roles of thalamostriatal projection in the control of visual ­discrimination. J Neurosci: in press.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuto Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kobayashi, K., Okada, K., Kai, N. (2012). Functional Circuitry Analysis in Rodents Using Neurotoxins/Immunotoxins. In: Morozov, A. (eds) Controlled Genetic Manipulations. Neuromethods, vol 65. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-533-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-533-6_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-532-9

  • Online ISBN: 978-1-61779-533-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics