Skip to main content

Morpholino Injection in Xenopus

  • Protocol
  • First Online:
Cardiovascular Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 843))

Abstract

The study of gene function in developmental biology has been significantly furthered by advances in antisense technology made in the early 2000s. This was achieved, in particular, by the introduction of morpholino (MO) oligonucleotides. The introduction of antisense MO oligonucleotides into cells enables researchers to readily reduce the levels of their protein of interest without investing huge financial or temporal resources, in both in vivo and in vitro model systems. Historically, the African clawed frog Xenopus has been used to study vertebrate embryological development, due to its ability to produce vast numbers of offspring that develop rapidly, in synchrony, and can be cultured in buffers with ease. The developmental progress of Xenopus embryos has been extensively characterized and this model organism is very easy to maintain. It is these attributes that enable MO-based knockdown strategies to be so effective in Xenopus. In this chapter, we will detail the methods of microinjecting MO oligonucleotides into early embryos of X. laevis and X. tropicalis. We will discuss how MOs can be used to prevent either pre-mRNA splicing or translation of the specific gene of interest resulting in abrogation of that gene’s function and advise on what control experiments should be undertaken to verify their efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Movassagh, M., and Philpott, A. (2008) Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1, Cardiovasc Res 79, 436–447.

    Article  PubMed  CAS  Google Scholar 

  2. Nagao, K., Taniyama, Y., Kietzmann, T., Doi, T., Komuro, I., and Morishita, R. (2008) HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus, J Biol Chem 283, 11841–11849.

    Article  PubMed  CAS  Google Scholar 

  3. Kumano, G., Ezal, C., and Smith, W. C. (2006) ADMP2 is essential for primitive blood and heart development in Xenopus, Dev Biol 299, 411–423.

    Article  PubMed  CAS  Google Scholar 

  4. Inui, M., Fukui, A., Ito, Y., and Asashima, M. (2006) Xapelin and Xmsr are required for cardiovascular development in Xenopus laevis, Dev Biol 298, 188–200.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang, C., Basta, T., and Klymkowsky, M. W. (2005) SOX7 and SOX18 are essential for cardiogenesis in Xenopus, Dev Dyn 234, 878–891.

    Article  PubMed  CAS  Google Scholar 

  6. Garriock, R. J., D’Agostino, S. L., Pilcher, K. C., and Krieg, P. A. (2005) Wnt11-R, a protein closely related to mammalian Wnt11, is required for heart morphogenesis in Xenopus, Dev Biol 279, 179–192.

    Article  PubMed  CAS  Google Scholar 

  7. Small, E. M., Warkman, A. S., Wang, D. Z., Sutherland, L. B., Olson, E. N., and Krieg, P. A. (2005) Myocardin is sufficient and necessary for cardiac gene expression in Xenopus, Development 132, 987–997.

    Article  PubMed  CAS  Google Scholar 

  8. Hilton, E. N., Manson, F. D., Urquhart, J. E., Johnston, J. J., Slavotinek, A. M., Hedera, P., Stattin, E. L., Nordgren, A., Biesecker, L. G., and Black, G. C. (2007) Left-sided embryonic expression of the BCL-6 corepressor, BCOR, is required for vertebrate laterality determination, Hum Mol Genet 16, 1773–1782.

    CAS  Google Scholar 

  9. Bartlett, H. L., and Weeks, D. L. (2008) Lessons from the lily pad: Using Xenopus to understand heart disease, Drug Discov Today Dis Models 5, 141–146.

    Article  PubMed  Google Scholar 

  10. Draper, B. W., Morcos, P. A., and Kimmel, C. B. (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown, Genesis 30, 154–156.

    Article  PubMed  CAS  Google Scholar 

  11. Heasman, J., Kofron, M., and Wylie, C. (2000) Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach, Dev Biol 222, 124–134.

    Article  PubMed  CAS  Google Scholar 

  12. Nutt, S. L., Bronchain, O. J., Hartley, K. O., and Amaya, E. (2001) Comparison of morpholino based translational inhibition during the development of Xenopus laevis and Xenopus tropicalis, Genesis 30, 110–113.

    Article  PubMed  CAS  Google Scholar 

  13. Moulton, J. D. (2007) Using morpholinos to control gene expression, Curr Protoc Nucleic Acid Chem Chapter 4, Unit 4 30.

    Google Scholar 

  14. Summerton, J. E. (2007) Morpholino, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity, Curr Top Med Chem 7, 651–660.

    Article  PubMed  CAS  Google Scholar 

  15. Bill, B. R., Petzold, A. M., Clark, K. J., Schimmenti, L. A., and Ekker, S. C. (2009) A primer for morpholino use in zebrafish, Zebrafish 6, 69–77.

    Article  PubMed  CAS  Google Scholar 

  16. Eisen, J. S., and Smith, J. C. (2008) Controlling morpholino experiments: don’t stop making antisense, Development 135, 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  17. Morcos, P. A. (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos, Biochem Biophys Res Commun 358, 521–527.

    Article  PubMed  CAS  Google Scholar 

  18. Dagle, J. M., and Weeks, D. L. (2001) Oligonucleotide-based strategies to reduce gene expression, Differentiation 69, 75-82.

    Article  PubMed  CAS  Google Scholar 

  19. Knudsen, H., and Nielsen, P. E. (1996) Antisense properties of duplex- and triplex-forming PNAs, Nucleic Acids Res 24, 494–500.

    Article  PubMed  CAS  Google Scholar 

  20. Ubbels, G. A., Hara, K., Koster, C. H., and Kirschner, M. W. (1983) Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs, J Embryol Exp Morphol 77, 15–37.

    PubMed  CAS  Google Scholar 

  21. Summerton, J. E. (2005) Endo-Porter: a novel reagent for safe, effective delivery of substances into cells, Ann N Y Acad Sci 1058, 62–75.

    Article  PubMed  CAS  Google Scholar 

  22. Falk, J., Drinjakovic, J., Leung, K. M., Dwivedy, A., Regan, A. G., Piper, M., and Holt, C. E. (2007) Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus, BMC Dev Biol 7, 107.

    Article  PubMed  Google Scholar 

  23. Christine, K. S., and Conlon, F. L. (2008) Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline, Dev Cell 14, 616–623.

    Article  PubMed  CAS  Google Scholar 

  24. Brown, D. D., Martz, S. N., Binder, O., Goetz, S. C., Price, B. M., Smith, J. C., and Conlon, F. L. (2005) Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis, Development 132, 553–563.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank L. Conlon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tandon, P., Showell, C., Christine, K., Conlon, F.L. (2012). Morpholino Injection in Xenopus . In: Peng, X., Antonyak, M. (eds) Cardiovascular Development. Methods in Molecular Biology, vol 843. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-523-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-523-7_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-522-0

  • Online ISBN: 978-1-61779-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics