Skip to main content

Analysis of Neural Crest Cell Fate During Cardiovascular Development Using Cre-Activated lacZ/β-Galactosidase Staining

  • Protocol
  • First Online:
Cardiovascular Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 843))

Abstract

It is important to identify the mechanisms regulating cardiovascular development. However, complex genetic tools are often required, including transgenic animals that express the lacZ transgene encoding the β-galactosidase enzyme under the control of a specific promoter or following recombination with the Cre recombinase. The latter can be useful for identifying specific cell populations of the developing cardiovascular system, including neural crest cells. The tracking of these cells can help clarify their fate in mutant embryos and elucidate the etiology of some congenital cardiovascular birth defects. This chapter highlights the methods used to stain embryonic tissues in whole mount or sections to detect the expression of the lacZ transgene with a focus on tracking cardiac neural crest cells using the Wnt1-Cre and R26R mouse lines. We also provide a protocol using fluorescence-activated cell sorting for collecting neural crest cells for further analysis. These protocols can be used with any embryos expressing Cre and lacZ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffman, J. I., and Kaplan, S. (2002) The incidence of congenital heart disease, J Am Coll Cardiol 39, 1890–1900.

    Article  PubMed  Google Scholar 

  2. Hoffman, J. I., Kaplan, S., and Liberthson, R. R. (2004) Prevalence of congenital heart disease, Am Heart J 147, 425–439.

    Article  PubMed  Google Scholar 

  3. Harvey, R. P. (2002) Patterning the vertebrate heart, Nat Rev Genet 3, 544–556.

    Article  PubMed  CAS  Google Scholar 

  4. Stennard, F. A., and Harvey, R. P. (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart, Development 132, 4897–4910.

    Article  PubMed  CAS  Google Scholar 

  5. Srivastava, D. (2006) Genetic regulation of cardiogenesis and congenital heart disease, Annu Rev Pathol 1, 199–213.

    Article  PubMed  CAS  Google Scholar 

  6. Srivastava, D., and Olson, E. N. (2000) A genetic blueprint for cardiac development, Nature 407, 221–226.

    Article  PubMed  CAS  Google Scholar 

  7. Creazzo, T. L., Godt, R. E., Leatherbury, L., Conway, S. J., and Kirby, M. L. (1998) Role of cardiac neural crest cells in cardiovascular development, Annu Rev Physiol 60, 267–286.

    Article  PubMed  CAS  Google Scholar 

  8. Kirby, M. L., and Waldo, K. L. (1995) Neural crest and cardiovascular patterning, Circ Res 77, 211–215.

    Article  PubMed  CAS  Google Scholar 

  9. Hutson, M. R., and Kirby, M. L. (2003) Neural crest and cardiovascular development: a 20-year perspective, Birth Defects Res C Embryo Today 69, 2–13.

    Article  PubMed  CAS  Google Scholar 

  10. Abu-Issa, R., Waldo, K., and Kirby, M. L. (2004) Heart fields: one, two or more?, Dev Biol 272, 281–285.

    Article  PubMed  CAS  Google Scholar 

  11. Waldo, K. L., Hutson, M. R., Ward, C. C., Zdanowicz, M., Stadt, H. A., Kumiski, D., Abu-Issa, R., and Kirby, M. L. (2005) Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart, Dev Biol 281, 78–90.

    Article  PubMed  CAS  Google Scholar 

  12. Waldo, K. L., Hutson, M. R., Stadt, H. A., Zdanowicz, M., Zdanowicz, J., and Kirby, M. L. (2005) Cardiac neural crest is necessary for normal addition of the myocardium to the arterial pole from the secondary heart field, Dev Biol 281, 66–77.

    Article  PubMed  CAS  Google Scholar 

  13. Chai, Y., Jiang, X., Ito, Y., Bringas, P., Jr., Han, J., Rowitch, D. H., Soriano, P., McMahon, A. P., and Sucov, H. M. (2000) Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis, Development 127, 1671–1679.

    PubMed  CAS  Google Scholar 

  14. Crane, J. F., and Trainor, P. A. (2006) Neural crest stem and progenitor cells, Annu Rev Cell Dev Biol 22, 267–286.

    Article  PubMed  CAS  Google Scholar 

  15. Trainor, P. A. (2005) Specification of neural crest cell formation and migration in mouse embryos, Semin Cell Dev Biol 16, 683–693.

    Article  PubMed  CAS  Google Scholar 

  16. Jones, N. C., and Trainor, P. A. (2005) Role of morphogens in neural crest cell determination, J Neurobiol 64, 388–404.

    Article  PubMed  CAS  Google Scholar 

  17. LaBonne, C., and Bronner-Fraser, M. (1999) Molecular mechanisms of neural crest formation, Annu Rev Cell Dev Biol 15, 81–112.

    Article  PubMed  CAS  Google Scholar 

  18. LaBonne, C., and Bronner-Fraser, M. (1998) Induction and patterning of the neural crest, a stem cell-like precursor population, J Neurobiol 36, 175–189.

    Article  PubMed  CAS  Google Scholar 

  19. Kirby, M. L., Gale, T. F., and Stewart, D. E. (1983) Neural crest cells contribute to normal aorticopulmonary septation, Science 220, 1059–1061.

    Article  PubMed  CAS  Google Scholar 

  20. Stoller, J. Z., and Epstein, J. A. (2005) Cardiac neural crest, Semin Cell Dev Biol 16, 704–715.

    Article  PubMed  CAS  Google Scholar 

  21. Sieber-Blum, M. (2004) Cardiac neural crest stem cells, Anat Rec A Discov Mol Cell Evol Biol 276, 34–42.

    Article  PubMed  Google Scholar 

  22. Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P., and Sucov, H. M. (2000) Fate of the mammalian cardiac neural crest, Development 127, 1607–1616.

    PubMed  CAS  Google Scholar 

  23. Gittenberger-de Groot, A. C., Bartelings, M. M., Deruiter, M. C., and Poelmann, R. E. (2005) Basics of cardiac development for the understanding of congenital heart malformations, Pediatr Res 57, 169–176.

    Article  PubMed  Google Scholar 

  24. Ramsdell, A. F. (2005) Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination, Dev Biol 288, 1–20.

    Article  PubMed  CAS  Google Scholar 

  25. Waldo, K. L., Kumiski, D. H., Wallis, K. T., Stadt, H. A., Hutson, M. R., Platt, D. H., and Kirby, M. L. (2001) Conotruncal myocardium arises from a secondary heart field, Development 128, 3179–3188.

    PubMed  CAS  Google Scholar 

  26. Nagy, A. (2000) Cre recombinase: the universal reagent for genome tailoring, Genesis 26, 99–109.

    Article  PubMed  CAS  Google Scholar 

  27. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain, Nat Genet 21, 70–71.

    Article  PubMed  CAS  Google Scholar 

  28. Moses, K. A., DeMayo, F., Braun, R. M., Reecy, J. L., and Schwartz, R. J. (2001) Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice, Genesis 31, 176–180.

    Article  PubMed  CAS  Google Scholar 

  29. Agah, R., Frenkel, P. A., French, B. A., Michael, L. H., Overbeek, P. A., and Schneider, M. D. (1997) Gene recombination in postmitotic cells. Targeted expression of Cre recombinase provokes cardiac-restricted, site-specific rearrangement in adult ventricular muscle in vivo, J Clin Invest 100, 169–179.

    CAS  Google Scholar 

  30. Christoffels, V. M., Grieskamp, T., Norden, J., Mommersteeg, M. T., Rudat, C., and Kispert, A. (2009) Tbx18 and the fate of epicardial progenitors, Nature 458, E8-9; discussion E9-10.

    Google Scholar 

  31. Kisanuki, Y. Y., Hammer, R. E., Miyazaki, J., Williams, S. C., Richardson, J. A., and Yanagisawa, M. (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo, Dev Biol 230, 230–242.

    Article  PubMed  CAS  Google Scholar 

  32. Yang, L., Cai, C. L., Lin, L., Qyang, Y., Chung, C., Monteiro, R. M., Mummery, C. L., Fishman, G. I., Cogen, A., and Evans, S. (2006) Isl1Cre reveals a common Bmp pathway in heart and limb development, Development 133, 1575–1585.

    Article  PubMed  CAS  Google Scholar 

  33. Macatee, T. L., Hammond, B. P., Arenkiel, B. R., Francis, L., Frank, D. U., and Moon, A. M. (2003) Ablation of specific expression domains reveals discrete functions of ectoderm- and endoderm-derived FGF8 during cardiovascular and pharyngeal development, Development 130, 6361–6374.

    Article  PubMed  CAS  Google Scholar 

  34. Ruest, L. B., Dager, M., Yanagisawa, H., Charite, J., Hammer, R. E., Olson, E. N., Yanagisawa, M., and Clouthier, D. E. (2003) dHAND-Cre transgenic mice reveal specific potential functions of dHAND during craniofacial development, Dev Biol 257, 263–277.

    Article  PubMed  CAS  Google Scholar 

  35. Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K., and McMahon, A. P. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase, Curr Biol 8, 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  36. Li, J., Chen, F., and Epstein, J. A. (2000) Neural crest expression of Cre recombinase directed by the proximal Pax3 promoter in transgenic mice, Genesis 26, 162–164.

    Article  PubMed  CAS  Google Scholar 

  37. Ruest, L. B., Xiang, X., Lim, K. C., Levi, G., and Clouthier, D. E. (2004) Endothelin-A receptor-dependent and -independent signaling pathways in establishing mandibular identity, Development 131, 4413–4423.

    Article  PubMed  CAS  Google Scholar 

  38. Abe, M., Ruest, L. B., and Clouthier, D. E. (2007) Fate of cranial neural crest cells during craniofacial development in endothelin-A receptor-deficient mice, Int J Dev Biol 51, 97–105.

    Article  PubMed  CAS  Google Scholar 

  39. Stottmann, R. W., Choi, M., Mishina, Y., Meyers, E. N., and Klingensmith, J. (2004) BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium, Development 131, 2205–2218.

    Article  PubMed  CAS  Google Scholar 

  40. Vincentz, J. W., Barnes, R. M., Rodgers, R., Firulli, B. A., Conway, S. J., and Firulli, A. B. (2008) An absence of Twist1 results in aberrant cardiac neural crest morphogenesis, Dev Biol 320, 131–139.

    Article  PubMed  CAS  Google Scholar 

  41. Luo, Y., High, F. A., Epstein, J. A., and Radice, G. L. (2006) N-cadherin is required for neural crest remodeling of the cardiac outflow tract, Dev Biol 299, 517–528.

    Article  PubMed  CAS  Google Scholar 

  42. Jaroszeski, M. J., and Radcliff, G. (1999) Fundamentals of flow cytometry, Mol Biotechnol 11, 37–53.

    Article  PubMed  CAS  Google Scholar 

  43. Cunningham, R. E. Overview of flow cytometry and fluorescent probes for flow cytometry, Methods Mol Biol 588, 319–326.

    Google Scholar 

  44. Radcliff, G., and Jaroszeski, M. J. (1998) Basics of flow cytometry, Methods Mol Biol 91, 1–24.

    PubMed  CAS  Google Scholar 

  45. Ruest, L. B., Hammer, R. E., Yanagisawa, M., and Clouthier, D. E. (2003) Dlx5/6-enhancer directed expression of Cre recombinase in the pharyngeal arches and brain, Genesis 37, 188–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Jeanne Santa Cruz for editing the manuscript and Dr. Chantale Lacelle for helping with the FACS. This work was supported by the NIH/ NIDCR U24 DE16472 (LBR) and T32 DE018380 (YZ) and a Research Development Grant (LBR) from the Office of the Vice President for Research & Graduate Studies/Texas A&M Health Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bruno Ruest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, Y., Ruest, L.B. (2012). Analysis of Neural Crest Cell Fate During Cardiovascular Development Using Cre-Activated lacZ/β-Galactosidase Staining. In: Peng, X., Antonyak, M. (eds) Cardiovascular Development. Methods in Molecular Biology, vol 843. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-523-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-523-7_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-522-0

  • Online ISBN: 978-1-61779-523-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics