Skip to main content

Leveraging Structural Information for the Discovery of New Drugs: Computational Methods

  • Protocol
  • First Online:
Structure-Based Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 841))

  • 2680 Accesses

Abstract

Escalating problems with drug resistance continue to compromise the effectiveness of commercial antibiotics, necessitating the search for novel classes of antimicrobial agents. To circumvent problems with resistance, a multitarget single-pharmacophore approach has been employed to discover inhibitors that possess balanced activity against multiple target enzymes. In this chapter, we examine the application of computational techniques, in particular, structure-based drug design approaches, to design new dual-targeting antibacterial agents against bacterial topoisomerases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lax E (2004) The Mold On Dr. Florey’s Coat: The Story of The Penicillin Miracle (Henry Holt & Co., New York) p 307 pp.

    Google Scholar 

  2. Talbot GH, Bradley J, Edwards JJE, Bilbert D, Scheld M, & Barlett JG (2006) Bad Bugs Need Drugs: An Update on the Development Pipeline from the Antimicrobial Availability Task Force of the Infectious Diseases Society of America. Clin. Infect. Dis. 42, 657–668.

    Article  PubMed  Google Scholar 

  3. Aspa J, Rajas O, Rodriguez de Castro F, Blanquer J, Zalacain R, Fenoll A, de Celes R, Vargas A, Salvanes FR, Espana PP, Rello J, & Torres A (2004) Drug-resistant pneumococcal pneumonia: clinical relevance and related factors. Clin. Infect. Dis. 38, 787–798.

    Article  PubMed  CAS  Google Scholar 

  4. Barrett CT & Barrett JF (2003) Antibacterials: are the new entries enough to deal with the emerging resistance problems? Curr. Opin. Biotech. 14, 621–626.

    Article  PubMed  CAS  Google Scholar 

  5. Jacobs MR (2003) Worldwide trends in antimicrobial resistance among common respiratory tract pathogens. Pediatr. Infect. Dis. J. 22, S109–S119.

    Article  PubMed  Google Scholar 

  6. Livermore DM (2004) The need for new antibiotics. Clin. Microbiol. Infect. 10, (Suppl. 4) 1–9.

    Article  PubMed  Google Scholar 

  7. Pottumarthy S, Fritsche TR, & Jones RN (2005) Comparative activity of oral and parenteral cephalosporins tested against multidrug-resistant Streptococcus pneumoniae: report from the SENTRY Antimicrobial Surveillance Program (1997–2003). Diagn. Microbiol. Infect. Dis. 51, 147–150.

    Article  PubMed  CAS  Google Scholar 

  8. Mutnick AH, Enne V, & Jones RN (2003) Linezolid resistance since 2001: SENTRY Antimicrobial Surveillance Program. Ann. Pharmacother. 37, 769–774.

    Article  PubMed  CAS  Google Scholar 

  9. Schwartz BS, Ngo PD, & Guglielmo BJ (2008) Daptomycin treatment failure for vancomycin-resistant Enterococcus faecium infective endocarditis: impact of protein binding? Ann. Pharmacother. 42, 289–290.

    Article  PubMed  Google Scholar 

  10. Cassell GH & Mekalanos J (2001) Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. J. Am. Med. Assoc. 285, 601–605.

    Article  CAS  Google Scholar 

  11. Spratt BG (1994) Resistance to antibiotics mediated by target alterations. Science 264, 388–393.

    Article  PubMed  CAS  Google Scholar 

  12. Ng EY, Trucksis M, & Hooper DC (1996) Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus. Antimicrob. Agents Chemother. 40, 1881–1888.

    PubMed  CAS  Google Scholar 

  13. Chopra I (1998) Protein synthesis as a target for antibacterial drugs: current status and future opportunities. Expert Opin. Investig. Drugs 7, 1237–1244.

    Article  PubMed  CAS  Google Scholar 

  14. Silver L (2007) Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Dis. 6, 41–55 and references cited therein.

    Google Scholar 

  15. Strahilevitz J & Hooper DC (2005) Dual targeting of topoisomerase IV and gyrase to reduce mutant selection: direct testing of the paradigm by using WCK-1734, a new fluoroquinolone, and ciprofloxacin. Antimicrob. Agents Chemother. 49, 1949–1956.

    Article  PubMed  CAS  Google Scholar 

  16. Mills SD (2003) The role of genomics in antimicrobial discovery. J. Antimicrob. Chemother. 51, 749–752.

    Article  PubMed  CAS  Google Scholar 

  17. Schneider G & Bohm HJ (2002) Virtual screening and fast automated docking methods. Drug Discov. Today 7, 64–70.

    PubMed  CAS  Google Scholar 

  18. Bailey D & Brown D (2001) High-throughput chemistry and structure-based design: survival of the smartest. Drug Discov. Today 6, 57–59.

    Article  PubMed  Google Scholar 

  19. Maxwell A (1997) DNA gyrase as s drug target. Trends Microbiol. 5, 102–109.

    Article  PubMed  CAS  Google Scholar 

  20. Drlica K & Zhao XL (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 61, 377–392.

    PubMed  CAS  Google Scholar 

  21. Wang JC (1996) DNA topoisomerases. Annu. Rev. Biochem. 65, 635–692.

    Article  PubMed  CAS  Google Scholar 

  22. Hiasa H, Yousef DO, & Marians KJ (1996) DNA strand cleavage is required for replication fork arrest by a frozen topoisomerase-quinolone-DNA ternary complex. J. Biol. Chem. 271, 26424–26429.

    Article  PubMed  CAS  Google Scholar 

  23. Brino L, Urzhumtsev A, Mousli M, Bronner C, Mitschler A, Oudet P, & Moras D (2000) Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J. Biol. Chem. 275, 9468–9475.

    Article  PubMed  CAS  Google Scholar 

  24. Hooper DC (1999) Mechanisms of quinolone resistance. Drug Resistance Updates 2, 38–55.

    Article  PubMed  CAS  Google Scholar 

  25. Bradbury BJ & Pucci MJ (2008) Recent advances in bacterial topoisomerase inhibitors. Current Opinion in Pharmacology 8, 574–581.

    Article  PubMed  CAS  Google Scholar 

  26. Boehm H-J, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, & Mueller F (2000) Novel inhibitors of DNA Gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J. Med. Chem. 43, 2664–2674.

    Article  PubMed  CAS  Google Scholar 

  27. Bellon S, D. PJ, Wei Y, Hayakawa K, Swenson LL, Charifson PS, Lippke JA, Aldape R, & Gross CH (2004) Crystal Structures of Escherichia coli Topoisomerase IV ParE Subunit (24 and 43 Kilodaltons): a Single Residue Dictates Differences in Novobiocin Potency against Topoisomerase IV DNA Gyrase. Antimicrobial Agents and Chemotherapy 48, 1856–1864 and the references cited therein.

    Google Scholar 

  28. Charifson PS, Grillot A, Grossman TH, Parsons JD, Badia M, Bellon S, Deininger DD, Drumm JE, Gross CH, Letiran A, Liao Y, Mani N, Nicolau DP, Perola E, Ronkin S, Shannon D, Swenson LL, Tang Q, Tessier PR, Tian S, Trudeau M, Wang T, Wei Y, Zhang H, & Stamos D (2008) Novel Dual-targeting Benzimidazole Urea Inhibitors of DNA Gyrase and Topoisomerase IV Possessing Potent Antibacterial Activity: Intelligent Design and Evolution through the Judicious use of Structure-guided Design and Structure-activity Relationships. J. Med. Chem. 51, 5243–5263.

    Article  PubMed  CAS  Google Scholar 

  29. Schechner M, Sirockin F, Stote RH, & Dejaegere AP (2004) Functionality Maps of the ATP Binding Site of DNA Gyrase B: Generation of a Consensus Model of Ligand Binding. J. Med. Chem. 47, 4373–4390.

    Article  PubMed  CAS  Google Scholar 

  30. Miranker A & Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Prot.: Struct. Funct. and Genet. 11, 29–34.

    Google Scholar 

  31. McRobb FM, Capuano B, Crosby IT, Chalmers DK, & Yuriev E (2010) Homology Modeling and Docking Evaluation of Aminergic G Protein-Coupled Receptors. Journal of Chemical Information and Modeling 50(4), 626–637.

    Article  PubMed  CAS  Google Scholar 

  32. Oshiro C, Bradley EK, Eksterowicz J, Evensen E, Lamb ML, Lanctot JK, Putta S, Stanton R, & Grootenhuis PDJ (2004) Performance of 3D-Database Molecular Docking Studies into Homology Models. Journal of Medicinal Chemistry 47(3), 764–767.

    Article  PubMed  CAS  Google Scholar 

  33. Ferrara P & Jacoby E (2007) Evaluation of the utility of homology models in high throughput docking. Journal of Molecular Modeling 13(8), 897–905.

    Article  PubMed  CAS  Google Scholar 

  34. Zhou Z, Felts A, Friesner R, & Levy R (2007) Comparative Performance of Several Flexible Docking Programs and Scoring Functions: Enrichment Studies for a Diverse Set of Pharmaceutically Relevant Targets. Journal of Chemical Information and Modeling 47(4), 1599–1608.

    Article  PubMed  CAS  Google Scholar 

  35. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, & Shenkin PS (2004) Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry 47(7), 1739–1749.

    Article  PubMed  CAS  Google Scholar 

  36. Moustakas D, Lang P, Pegg S, Pettersen E, Kuntz I, Brooijmans N, & Rizzo R (2006) Development and validation of a modular, extensible docking program: DOCK 5. Journal of Computer-Aided Molecular Design 20(10), 601–619.

    Article  PubMed  CAS  Google Scholar 

  37. Jones G, Willett P, Glen RC, Leach AR, & Taylor R (1997) Development and Validation of a Generic Algorithm for Flexible Docking. J. Mol. Biol. 267, 727–748.

    Article  PubMed  CAS  Google Scholar 

  38. Guimarães CRW & Cardozo M (2008) MM-GB/SA Rescoring of Docking Poses in Structure-Based Lead Optimization. Journal of Chemical Information and Modeling 48(5), 958–970.

    Article  PubMed  CAS  Google Scholar 

  39. Hansson T, Marelius J, & Åqvist J (1998) Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design 12(1), 27–35.

    Article  PubMed  CAS  Google Scholar 

  40. Osborne MJ, Schnell J, Benkovic SJ, Dyson HJ, & Wright PE (2001) Backbone Dynamics in Dihydrofolate Reductase Complexes: Role of Loop Flexibility in the Catalytic Mechanism†. Biochemistry 40(33), 9846–9859.

    Article  PubMed  CAS  Google Scholar 

  41. Mancera R (2007) Molecular modeling of hydration in drug design. Current Opinion in Drug Discovery and Development 10, 275–280.

    CAS  Google Scholar 

  42. Wong SE & Lightstone FC (2011) Accounting for water molecules in drug design. Expert Opinion on Drug Discovery 6(1), 65–74.

    Article  CAS  Google Scholar 

  43. Huang N & Shoichet BK (2008) Exploiting Ordered Waters in Molecular Docking. Journal of Medicinal Chemistry 51(16), 4862–4865.

    Article  PubMed  CAS  Google Scholar 

  44. Minke WE, Diller DJ, Hol WGJ, & Verlinde CLMJ (1999) The Role of Waters in Docking Strategies with Incremental Flexibility for Carbohydrate Derivatives: Heat-Labile Enterotoxin, a Multivalent Test Case. Journal of Medicinal Chemistry 42(10), 1778–1788.

    Article  PubMed  CAS  Google Scholar 

  45. Michel J, Tirado-Rives J, & Jorgensen WL (2009) Energetics of Displacing Water Molecules from Protein Binding Sites: Consequences for Ligand Optimization. Journal of the American Chemical Society 131(42), 15403–15411.

    Article  PubMed  CAS  Google Scholar 

  46. Rarey M, Kramer B, Lengauer T, & Klebe G (1996) A Fast Flexible docking method using an incremental construction algorithm. J. Mol. Biol. 261, 470–489.

    Article  PubMed  CAS  Google Scholar 

  47. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, & Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19(14), 1639–1662.

    Article  CAS  Google Scholar 

  48. Jones G, Willett P, & Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology 245(1), 43–53.

    Article  PubMed  CAS  Google Scholar 

  49. Corbeil CR & Moitessier N (2009) Docking Ligands into Flexible and Solvated Macro­molecules. 3. Impact of Input Ligand Con­formation, Protein Flexibility, and Water molecules on the Accuracy of Docking Programs. J. Chem. Inf. Model. 49, 997–1009.

    Article  PubMed  CAS  Google Scholar 

  50. Liu M & Wang S (1999) MCDOCK: A Monte Carlo simulation approach to the molecular docking problem. Journal of Computer-Aided Molecular Design 13(5), 435–451.

    Article  PubMed  CAS  Google Scholar 

  51. Accelrys Discovery Studio Suites, Accelrys, Inc, 10188 Telesis Court, Suite 100 San Diego, CA 92121, USA.

    Google Scholar 

  52. McMartin C & Bohacek RS (1997) QXP, Powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided. Mol. Design 11, 333–344.

    Article  CAS  Google Scholar 

  53. Miller MD, Kearsley SK, Underwood DJ, & Sheridan RP (1994) FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. Journal of Computer-Aided Molecular Design 8(2), 153–174.

    Article  PubMed  CAS  Google Scholar 

  54. FRED: Fast Rigid Exhaustive Docking, Version 2.2.5, OpenEye Scientific Software, Inc., Santa Fe, NM, USA.

    Google Scholar 

  55. Abagyan RT, & Kuznetsov, M. R., (1994) A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 15, 488–506.

    Article  CAS  Google Scholar 

  56. Blaney JM & Dixon JS, DockIt, Metaphorics, LLC, Mission Viejo, CA.

    Google Scholar 

  57. Hart TN & Read RJ (1992) A multiple-start Monte Carlo docking method. Proteins 13, 206–222.

    Article  PubMed  CAS  Google Scholar 

  58. Hart TN, Ness, R. S., & Read, R. J., (1997) Critical evaluation of the research docking program for the CASP2 challenge. Proteins, Suppl 1, 205–209.

    Google Scholar 

  59. Thomsen R & Christensen MH (2006) MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 49(11), 3315–3321.

    Article  PubMed  CAS  Google Scholar 

  60. Jain AN (2003) Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 46, 499–511.

    Article  PubMed  CAS  Google Scholar 

  61. MOE: Molecular Operating Environment, Chemical Computing Group Inc., 1010 Sherbrooke, Street West, Suite 910, Montreal, Quebec, Canada.

    Google Scholar 

  62. Brooijmans N & Kuntz ID (2003) Molecular Recognition and Docking Algorithms. Annual Review of Biophysics and Biomolecular Structure 32(1), 335–373.

    Article  PubMed  CAS  Google Scholar 

  63. Gilson M, GIven J, Bush B, & McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophysical Journal 72(3),1047–1069.

    Google Scholar 

  64. Wang J, Deng Y, & Roux B (2006) Absolute Binding Free Energy Calculations Using Molecular Dynamics Simulations with Restraining Potentials. 91(8), 2798–2814.

    Google Scholar 

  65. Mobley DL, Graves AP, Chodera JD, McReynolds AC, Shoichet BK, & Dill KA (2007) Predicting Absolute Ligand Binding Free Energies to a Simple Model Site. Journal of Molecular Biology 371(4), 1118–1134.

    Article  PubMed  CAS  Google Scholar 

  66. Morris GM, Goodsell DS, Huey R, & Olson AJ (1996) Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. Journal of Computer-Aided Molecular Design 10(4), 293–304.

    Article  PubMed  CAS  Google Scholar 

  67. Muegge I (2000) A knowledge-based scoring function for protein-ligand interactions: Probing the reference state. Perspectives in Drug Discovery and Design, 20, 99–114.

    Article  CAS  Google Scholar 

  68. Gohlke H, Hendlich M, & Klebe G (2000) Knowledge-based Scoring Function to Predict Protein-Ligand Interactions. Journal of Molecular Biology 295, 337–356.

    Article  PubMed  CAS  Google Scholar 

  69. Eldridge M, Murray C, Auton T, Paolini G, & Mee R (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 11(5), 425–445.

    Article  PubMed  CAS  Google Scholar 

  70. Korb O, Stützle T, & Exner TE (2009) Empirical Scoring Functions for Advanced Protein−Ligand Docking with PLANTS. Journal of Chemical Information and Modeling 49(1), 84–96.

    Google Scholar 

  71. Tirado-Rives J & Jorgensen WL (2006) Contribution of conformer focusing to the uncertainty in predicting free energies for protein-ligand binding. J. Med. Chem. 49, 580–5884.

    Article  CAS  Google Scholar 

  72. Bursulaya BD, Totrov M, Abagyan R, & Brooks III CL (2003) Comparative study of several algorithms for flexible ligand docking. J. Comput. Aided. Mol. Design 17, 755–763.

    Article  CAS  Google Scholar 

  73. Kellenberger E, Rodrigo J, Muller P, & Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57, 225–242.

    Article  PubMed  CAS  Google Scholar 

  74. Klon AE, Glick M, Thoma M, Acklin P, & Davies JW (2004) Finding more needles in the haystack: a simple and efficient method for improving high-throughput docking results. J. Med. Chem. 47, 2743–2749.

    Article  PubMed  CAS  Google Scholar 

  75. Perola E, Walters WP, & Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56, 235–249.

    Article  PubMed  CAS  Google Scholar 

  76. Muege I & Enyedy I (2004) Virtual screening for kinase targets. J. Curr. Med. Chem. 11, 693–707.

    Article  Google Scholar 

  77. Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, & Jaeger EP (2005) Comparison of automated docking programs as virtual screening tools. J. Med. Chem. 48, 962–976.

    Article  PubMed  CAS  Google Scholar 

  78. Kontoyianni M, Sokol GS, & McClellan LM (2005) Evaluation of library ranking efficacy in virtual screening. J. Comput. Chem. 26, 11–22.

    Article  PubMed  CAS  Google Scholar 

  79. Chen H, Lyne PD, Giordanetto F, Lovell T, & Li J (2006) On evaluating molecular docking methods for pose prediction and enrichment factors. J. Chem. Inf. Model. 46, 401–415.

    Article  PubMed  CAS  Google Scholar 

  80. Warren GL, Andrews CW, Capelli A-M, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall I, D., Woolven JM, Peishoff CE, & Head MS (2006) A critical assessment of docking programs and scoring functions. J. Med. Chem. 49, 5912–5931.

    Google Scholar 

  81. Schulz-Gasch T & Stahl M (2003) Binding site characteristics in structure-based virtual screening: Evaluation of current docking tools. J. Mol. Model 9, 47–57.

    PubMed  CAS  Google Scholar 

  82. Wang R, Lu Y, Fang X, & Wang S (2004) An Extensive Test of 14 Scoring Functions Using the PDBbind Refined Set of 800 Protein−Ligand Complexes. Journal of Chemical Information and Computer Sciences 44(6), 2114–2125.

    PubMed  CAS  Google Scholar 

  83. Wang R, Lu Y, & Wang S (2003) Comparative Evaluation of 11 Scoring Functions for Molecular Docking. Journal of Medicinal Chemistry 46(12), 2287–2303.

    Article  PubMed  CAS  Google Scholar 

  84. Clark RD, Strizhev A, Leonard JM, Blake JF, & Matthew JB (2002) Consensus scoring for ligand/protein interactions. Journal of Molecular Graphics and Modelling 20(4), 281–295.

    Article  PubMed  CAS  Google Scholar 

  85. Gohlke H & Klebe G (2001) Statistical potentials and scoring functions applied to protein-ligand binding. Current Opinion in Structural Biology 11(2), 231–235.

    Article  PubMed  CAS  Google Scholar 

  86. Charifson PS, Corkery JJ, Murcko MA, & Walters WP (1999) Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins. Journal of Medicinal Chemistry 42(25), 5100–5109.

    Article  PubMed  CAS  Google Scholar 

  87. Graves AP, Shivakumar DM, Boyce SE, Jacobson MP, Case DA, & Shoichet BK (2008) Rescoring Docking Hit Lists for Model Cavity Sites: Predictions and Experimental Testing. Journal of Molecular Biology 377(3), 914–934.

    Article  PubMed  CAS  Google Scholar 

  88. Zhong S, Zhang Y, & Xiu Z (2010) Rescoring ligand docking poses. Current Opinion in Drug Discovery and Development 13, 326–334.

    CAS  Google Scholar 

  89. Lyne PD, Lamb ML, & Saeh JC (2006) Accurate Prediction of the Relative Potencies of Members of a Series of Kinase Inhibitors Using Molecular Docking and MM-GBSA Scoring. Journal of Medicinal Chemistry 49(16), 4805–4808.

    Article  PubMed  CAS  Google Scholar 

  90. Srivastava M, Singh H, & Naik PK (2010) Molecular Modeling Evaluation of the Antimalarial Activity of Artemisinin Analogues: Molecular Docking and Rescoring using Prime/MM-GBSA Approach. Current Research Journal of Biological Sciences 2(2), 83–102.

    CAS  Google Scholar 

  91. Cole JC, Murray CW, Nissink JW, Taylor RD, & Taylor R (2005) Comparing protein-ligand docking programs is difficult. Proteins 60, 325–332.

    Article  PubMed  CAS  Google Scholar 

  92. Noble M, Barrett P, Endicott J, Johnson L, McDonnell J, Robertson G, & Zawaira A (2005) Exploiting structural principles to design cyclin-dependent kinase inhibitors. Biochimica et Biophysica Acta (BBA) - Proteins & Proteomics 1754(1–2), 58–64.

    Google Scholar 

  93. Cavasotto CN & Abagyan RA (2004) Protein Flexibility in Ligand Docking and Virtual Screening to Protein Kinases. Journal of Molecular Biology 337(1), 209–225.

    Article  PubMed  CAS  Google Scholar 

  94. Bowman AL, Lerner MG, & Carlson HA (2007) Protein Flexibility and Species Specificity in Structure-Based Drug Discovery: Dihydrofolate Reductase as a Test System. Journal of the American Chemical Society 129(12), 3634–3640.

    Article  PubMed  CAS  Google Scholar 

  95. Then RL (2004) Antimicrobial Dihydrofolate Reductase Inhibitors - Achievements and Future Options: Review. Journal of Chemo-therapy 16, 3–12.

    PubMed  CAS  Google Scholar 

  96. Klebe G, Krämer O, & Sotriffer C (2004) Strategies for the design of inhibitors of aldose reductase, an enzyme showing pronounced induced-fit adaptations. Cellular and Molecular Life Sciences 61(7), 783–793.

    Article  PubMed  CAS  Google Scholar 

  97. Sotriffer CA, Krämer O, & Klebe G (2004) Probing flexibility and “induced-fit” phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics 56(1), 52–66.

    Article  CAS  Google Scholar 

  98. Babbitt PC, Hasson MS, Wedekind JE, Palmer DRJ, Barrett WC, Reed GH, Rayment I, Ringe D, Kenyon GL, & Gerlt JA (1996) The Enolase Superfamily: A General Strategy for Enzyme-Catalyzed Abstraction of the Œ-Protons of Carboxylic Acids‚ Biochemistry 35(51), 16489–16501.

    Google Scholar 

  99. Fernández-Recio J, Totrov M, & Abagyan R (2002) Soft protein–protein docking in internal coordinates. Protein Science 11(2), 280–291.

    Article  PubMed  CAS  Google Scholar 

  100. Wong CF, Kua J, Zhang Y, Straatsma TP, & McCammon JA (2005) Molecular docking of balanol to dynamics snapshots of protein kinase A. Proteins: Structure, Function, and Bioinformatics 61(4), 850–858.

    Article  CAS  Google Scholar 

  101. Alonso H, Bliznyuk AA, & Gready JE (2006) Combining Docking and Molecular Dynamics Simulations in Drug Design. Medicinal Research Reviews 26(5), 531–568.

    Article  PubMed  CAS  Google Scholar 

  102. Wong S & Jacobson MP (2008) Conformational selection in silico: Loop latching motions and ligand binding in enzymes. Proteins: Structure, Function, and Bioin­formatics 71(1), 153–164.

    Article  CAS  Google Scholar 

  103. Sandak B, Wolfson HJ, & Nussinov R (1998) Flexible Docking Allowing Induced Fit in Proteins: Insights From an Open to Closed Conformational Isomers. Proteins: Structure, Function, and Bioinformatics 32, 159–174.

    Article  CAS  Google Scholar 

  104. Cavasotto CN, Kovacs JA, & Abagyan RA (2005) Representing Receptor Flexibility in Ligand Docking through Relevant Normal Modes. Journal of the American Chemical Society 127(26), 9632–9640.

    Article  PubMed  CAS  Google Scholar 

  105. Oblak M, Gdadolnik SG, Kotnik M, Jerala R, Filipic M, & Solmajer T (2005) In silico fragment-based discovery of indolin-2-one analogues as potent DNA gyrase inhibitors. Bioorganic & Medicinal Chemistry Letters 15, 5207–5210.

    Article  CAS  Google Scholar 

  106. Dutta R & Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25, 24–28.

    Article  PubMed  CAS  Google Scholar 

  107. Ostrov DA, Prada JAH, Corsino PE, Finton KA, Le N, & Rowe TC (2007) Discovery of novel DNA Gyrase inhibitors by high-throughput virtual screening. Antimicrobial Agents and Chemotherapy 51, 3688–3698.

    Article  PubMed  CAS  Google Scholar 

  108. De Amorim HLN, Caceres RA, & Netz PA (2008) Linear Interaction Energy (LIE) Method in Lead Discovery and Optimization. Current Drug Targets 9, 1100–1105.

    Article  PubMed  Google Scholar 

  109. Kolb P, Huang D, Dey F, & Caflisch A (2008) Discovery of Kinase Inhibitors by High-Throughput Docking and Scoring Based on a Transferable Linear Interaction Energy Model. Journal of Medicinal Chemistry 51(5), 1179–1188.

    Article  PubMed  CAS  Google Scholar 

  110. Rastelli G, Rio AD, Degliesposti G, & Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Journal of Computational Chemistry 31(4), 797–810.

    PubMed  CAS  Google Scholar 

  111. Bag S, Tawari NR, Degani MS, & Queener SF (2010) Design, synthesis, biological evaluation and computational investigation of novel inhibitors of dihydrofolate reductase of opportunistic pathogens. Bioorganic & Medicinal Chemistry 18(9), 3187–3197.

    Article  CAS  Google Scholar 

  112. Henriksen ST, Liu J, Estiu G, Oltvai ZN, & Wiest O (2010) Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays. Bioorganic & Medicinal Chemistry 18(14), 5148–5156.

    Article  CAS  Google Scholar 

  113. Podvinec M, Lim SP, Schmidt T, Scarsi M, Wen D, Sonntag L-S, Sanschagrin P, Shenkin PS, & Schwede T (2010) Novel Inhibitors of Dengue Virus Methyltransferase: Discovery by in Vitro-Driven Virtual Screening on a Desktop Computer Grid. Journal of Medicinal Chemistry 53(4), 1483–1495.

    Article  PubMed  CAS  Google Scholar 

  114. Musicki B, Periers A, Laurin P, Ferroud D, Benedetti Y, Lachaud S, Chatreaux F, Haesslein J, Iltis A, Pierre C, Khider J, Tessot N, Airault M, Demassey J, Dupuis-Hamelin C, Lassaigne P, Bonnefoy A, Vicat P, & Klich M (2000) Improved antibacterial activities of coumarin antibiotics bearing 5’, 5’-dialkylnoviose: Biological activity of RU79115. Biorg. Med. Chem. Lett. 10, 1695–1699.

    Article  CAS  Google Scholar 

  115. Angehrn P, Buchmann S, Funk C, Goetschi E, Gmuender H, Hebeisen P, Kostrewa D, Link H, Luebbers T, Masciadri R, Nielsen J, Reindl P, Ricklin F, Schmitt-Hoffmann A, & Theil FP (2004) New antibacterial agents derived from the DNA gyrase inhibitor cyclothialidine. J. Med. Chem. 47, 1487–1513.

    Article  PubMed  CAS  Google Scholar 

  116. Starr JT, Sciotti RJ, Hanna DL, Huband M, D., Mullins LM, Cai H, Gage JW, Lockard M, Rauckhorst MR, Owen RM, Lall MS, Tomilo M, Chen H, McCurdy SP, & Barbachyn MR (2009) 5-(2-Pyrimidinyl)-imidazol[1,2-a]pyridines are antibacterial agents targeting the ATPase domains of DNA gyrase and topoisomerase IV. Biorg. Med. Chem. Lett. 19, 5302–5306.

    Google Scholar 

  117. East SP, White CB, Barker O, Barker S, Bennett J, Brown D, Boyd EA, Brennan C, Chowdhury C, Collins I, Convers-Reignier E, Dymock BW, Fletcher R, Haydon DJ, Gardiner M, Hatcher S, Ingram P, Lancett P, Mortenson P, Papadopuolos K, Smee C, Thomaides-Brears HB, Tye H, Workman, J., & Czaplewski LG (2009) DNA gyrase (GyrB)/topoisomerase IV (pare) inhibitors: Synthesis and antibacterial activity. Biorg. Med. Chem. Lett. 19, 894–899.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Release number LLNL-JRNL-476952.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felice C. Lightstone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nguyen, T.B., Wong, S.E., Lightstone, F.C. (2012). Leveraging Structural Information for the Discovery of New Drugs: Computational Methods. In: Tari, L. (eds) Structure-Based Drug Discovery. Methods in Molecular Biology, vol 841. Humana Press. https://doi.org/10.1007/978-1-61779-520-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-520-6_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-519-0

  • Online ISBN: 978-1-61779-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics