Skip to main content

The Role of Enzymology in a Structure-Based Drug Discovery Program: Bacterial DNA Gyrase

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 841))

Abstract

The capability to accurately, rapidly, and reproducibly determine the affinity of a ligand for a target protein or enzyme is a vital component for a successful structure-based drug design effort. In order to successfully drive a structure-based drug design (SBDD) project forward, multiple distinct assays, each with particular strengths and weaknesses, need to be employed. Using bacterial DNA gyrase as an example, a range of assays are described that will fully support an SBDD program.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kampranis, S. C., Bates, A. D., and Maxwell, A. (1999) A model for the mechanism of strand passage by DNA gyrase. Proc. Natl. Acad. Sci. USA. 96, 8414–9.

    Article  PubMed  CAS  Google Scholar 

  2. Reece, R. J., and Maxwell, A. (1991) DNA gyrase: structure and function. Crit. Rev. Biochem. Mol. Biol. 26, 335–75.

    Article  PubMed  CAS  Google Scholar 

  3. Wigley, D.B. (1995). Structure and mechanism of DNA gyrase. In Nucleic acids and molecular biology,Vol. 9 (Eckstein, F., and Lilley, D. M.J., eds.) Berlin, Springer-Verlag. pp 165–176

    Google Scholar 

  4. Brino, L., Urzhumtsev, A., Mousli, M., Bronner, C., Mitschler, A., Oudet, P., and Moras, D. (2000) Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J. Biol. Chem. 275, 9468–75.

    Article  PubMed  CAS  Google Scholar 

  5. Ali, J.A., Jackson, A. P., Howells, A. J., and Maxwell A. (1993) The 43-kilodalton N-terminal fragment of the DNA gyrase B protein hydrolyzes ATP and binds coumarin drugs. Biochemistry 32, 2717–24.

    Article  PubMed  CAS  Google Scholar 

  6. Drlica, K., Coughlin, S. (1989) Inhibitors of DNA gyrase. Pharmacol. Ther. 44, 107–21.

    Article  PubMed  CAS  Google Scholar 

  7. Wolfson, J. S., Hooper, D. C. (1985) The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob. Agents Chemother. 28, 581–6.

    PubMed  CAS  Google Scholar 

  8. Maxwell, A. (1992) The molecular basis of quinolone action. J. Antimicrob. Chemother. 30, 409–14.

    Article  PubMed  CAS  Google Scholar 

  9. Maxwell, A., and Gellert, M. (1986) Mechanistic aspects of DNA topoisomerases. Adv. Protein Chem. 38, 69–107.

    Article  PubMed  CAS  Google Scholar 

  10. Tingey, A. P., Maxwell, A. (1996) Probing the role of the ATP-operated clamp in the strand-passage reaction of DNA gyrase. Nucleic Acids Res. 24, 4868–73.

    Article  PubMed  CAS  Google Scholar 

  11. Jackson, A. P., Maxwell, A., and Wigley, D. B. (1991) Preliminary crystallographic analysis of the ATP-hydrolysing domain of the Escherichia coli DNA gyrase B protein. J. Mol. Biol. 217, 15–7.

    Article  PubMed  CAS  Google Scholar 

  12. Wigley, D. B., Davies, G. J., Dodson, E. J., Maxwell, A., and Dodson, G. (1991) Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351, 624–9.

    Article  PubMed  CAS  Google Scholar 

  13. Brown, P., O., Peebles, C.,L., and Cozzarelli, N.,R. (1979) A topoisomerase from Escherichia coli related to DNA gyrase. Proc. Natl. Acad. Sci. USA. 76, 6110–4.

    Google Scholar 

  14. Gellert, M., Fisher, L. M, O’Dea, M. H. (1979) DNA gyrase: purification and catalytic properties of a fragment of gyrase B protein. Proc. Natl. Acad. Sci. USA. 76, 6289–93.

    Article  PubMed  CAS  Google Scholar 

  15. Adachi, T., Mizuuchi, M., Robinson, E. A., Appella, E., O’Dea, M. H., Gellert, M., and Mizuuchi, K. (1987) DNA sequence of the E. coli gyrB gene: application of a new sequencing strategy. Nucleic Acids Res. 15, 771–84.

    Article  PubMed  CAS  Google Scholar 

  16. Ali, J. A., Orphanides, G., and Maxwell, A. (1995) Nucleotide binding to the 43-kilodalton N-terminal fragment of the DNA gyrase B protein. Biochemistry 34, 9801–8.

    Article  PubMed  CAS  Google Scholar 

  17. Lamour, V., Hoermann, L., Jeltsch, J. M., Oudet, P., and Moras, D. (2002) An open conformation of the Thermus thermophilus gyrase B ATP-binding domain. J. Biol. Chem. 277, 18947–53.

    Article  PubMed  CAS  Google Scholar 

  18. Sugino, A., Higgins, N. P., Brown, P. O., Peebles, C. L., Cozzarelli, N. R. (1978) Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc. Natl. Acad. Sci. USA. 75, 4838–42.

    Article  PubMed  CAS  Google Scholar 

  19. Maxwell, A., and Lawson, D. M. (2003) The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr. Top. Med. Chem. 3, 283–303.

    Article  PubMed  CAS  Google Scholar 

  20. Anderle, C., Stieger, M., Burrell, M., Reinelt, S., Maxwell, A., Page, M. and Heide, L. (2008) Biological activities of novel gyrase inhibitors of the aminocoumarin class. Antimicrob Agents Chemother. 52, 1982–90.

    Article  PubMed  CAS  Google Scholar 

  21. Rowlands, M. G., Newbatt, Y. M., Prodromou, C., Pearl, L. H., Workman, P., and Aherne, W. (2004) High-throughput screening assay for inhibitors of heat-shock protein 90 ATPase activity. Anal. Biochem. 327, 176–83.

    Article  PubMed  CAS  Google Scholar 

  22. Chène, P., Rudloff, J., Schoepfer, J., Furet, P., Meier, P., Qian, Z., Schlaeppi, J. M., Schmitz, R., and Radimerski, T. (2009) Catalytic inhibition of topoisomerase II by a novel rationally designed ATP-competitive purine analogue. BMC Chem. Biol. 9, 1.

    Article  PubMed  Google Scholar 

  23. Webb, M.R. (1992) A continuous spectrophotometric assay for inorganic phosphate and for measuring phosphate release kinetics in biological systems. Proc. Natl. Acad. Sci. USA. 89, 4884–7.

    Article  PubMed  CAS  Google Scholar 

  24. Copeland, R. A. (2000) Tight binding inhibitors. In Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis (Copeland, R. A., ed). John Wiley & Sons, New York, NY, pp 305–317.

    Google Scholar 

  25. Chatterji, M., Unniraman, S., Maxwell, A., and Nagaraja, V. (2000) The additional 165 amino acids in the B protein of Escherichia coli DNA gyrase have an important role in DNA binding. J. Biol. Chem. 275, 22888–94.

    Article  PubMed  CAS  Google Scholar 

  26. Flatman, R. H., Howells, A. J., Heide, L., Fiedler, H. P., and Maxwell, A. (2005) Simocyclinone D8, an inhibitor of DNA gyrase with a novel mode of action. Antimicrob. Agents Chemother. 49, 1093–100.

    Article  PubMed  CAS  Google Scholar 

  27. Nakanishi, A., Imajoh-Ohmi, S., and Hanaoka, F. (2002) Characterization of the interaction between DNA gyrase inhibitor and DNA gyrase of Escherichia coli. J. Biol. Chem. 277, 8949–54.

    Article  PubMed  CAS  Google Scholar 

  28. Boehm, H.J., Boehringer, M., Bur, D., Gmuender, H., Huber, W., Klaus, W., Kostrewa, D., Kuehne, H., Luebbers, T., Meunier-Keller, N., and Mueller, F. (2000) Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J. Med. Chem. 43, 2664–74.

    Article  PubMed  CAS  Google Scholar 

  29. Sissi, C., Vazquez, E., Chemello, A., Mitchenall, L. A., Maxwell, A., and Palumbo, M. (2010) Mapping simocyclinone D8 interaction with DNA gyrase: evidence for a new binding site on GyrB. Antimicrob. Agents Chemother. 54, 213–20.

    Article  PubMed  CAS  Google Scholar 

  30. D’Arcy, A., Stihle, M., Kostrewa, D., and Dale, G. (1999) Crystal engineering: a case study using the 24 kDa fragment of the DNA gyrase B subunit from Escherichia coli. Acta Cryst. D55, 1623–1625

    Google Scholar 

  31. Lafitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Briand, C., and Gilli, R. (2002) DNA gyrase interaction with coumarin-based inhibitors: the role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry 41, 7217–23.

    Article  PubMed  CAS  Google Scholar 

  32. Holdgate, G. (2009) Isothermal titration calorimetry and differential scanning calorimetry. Methods Mol. Biol. 572, 101–33

    Article  PubMed  Google Scholar 

  33. Lewis, E. A., and Murphy, K. P. (2005) Isothermal titration calorimetry. Methods Mol. Biol. 305, 1–16.

    PubMed  CAS  Google Scholar 

  34. Holdgate, G. A., Tunnicliffe, A., Ward, W. H., Weston, S. A., Rosenbrock, G., Barth, P. T., Taylor, I. W., Pauptit, R. A., and Timms, D. (1997) The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study. Biochemistry 36, 9663–73.

    Article  PubMed  CAS  Google Scholar 

  35. Kim, J., Felts, S., Llauger, L., He, H., Huezo, H., Rosen, N., and Chiosis, G. (2004) Development of a fluorescence polarization assay for the molecular chaperone Hsp90. J. Biomol. Screen. 9, 375–81.

    Article  PubMed  CAS  Google Scholar 

  36. Onuoha, S. C., Mukund, S. R., Coulstock, E. T., Sengerovà, B., Shaw, J., McLaughlin, S. H., and Jackson, S. E. (2007) Mechanistic studies on Hsp90 inhibition by ansamycin derivatives. J. Mol. Biol. 372, 287–97.

    Article  PubMed  CAS  Google Scholar 

  37. Gooljarsingh, L. T, Fernandes, C., Yan, K., Zhang, H., Grooms, M., Johanson, K., Sinnamon, R. H., Kirkpatrick, R. B., Kerrigan, J., Lewis, T., Arnone, M., King, A. J., Lai, Z., Copeland, R. A., and Tummino, P. J. (2006) A biochemical rationale for the anticancer effects of Hsp90 inhibitors: slow, tight binding inhibition by geldanamycin and its analogues. Proc. Natl. Acad. Sci. USA. 103, 7625–30.

    Article  PubMed  CAS  Google Scholar 

  38. Roehrl, M. H., Wang, J. Y., and Wagner, G. (2004) A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by fluorescence polarization. Biochemistry 43, 16056–66.

    Article  PubMed  CAS  Google Scholar 

  39. Maxwell, A, Burton, N. P, and O’Hagan, N. (2006) High-throughput assays for DNA gyrase and other topoisomerases. Nucleic Acids Res. 34, e104.

    Article  PubMed  Google Scholar 

  40. Fisher, L. M., and Pan, X.S. (2008) Methods to assay inhibitors of DNA gyrase and topoisomerase IV activities. Methods Mol. Med. 142, 11–23.

    Google Scholar 

  41. Kawabata, Y., Ooya, T., Lee, W. K., and Yui, N. (2002) Self-assembled plasmid DNA network prepared through both triple-helix formation and streptavidin-biotin interaction. Macromol. Biosci. 2, 195–198.

    Article  CAS  Google Scholar 

  42. Cheng, Y., and Prusoff, W. H. (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–108.

    Article  PubMed  CAS  Google Scholar 

  43. Morrison, J. F. (1969) Kinetics of the reversible inhibition of enzyme-catalyzed reactions by tight-binding inhibitors. Biochem. Biophys. Acta. 185, 269–86.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Cunningham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cunningham, M.L. (2012). The Role of Enzymology in a Structure-Based Drug Discovery Program: Bacterial DNA Gyrase. In: Tari, L. (eds) Structure-Based Drug Discovery. Methods in Molecular Biology, vol 841. Humana Press. https://doi.org/10.1007/978-1-61779-520-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-520-6_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-519-0

  • Online ISBN: 978-1-61779-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics