Skip to main content

A Medicinal Chemistry Perspective on Structure-Based Drug Design and Development

  • Protocol
  • First Online:
Structure-Based Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 841))

Abstract

The application of X-ray crystallography and molecular modeling can provide valuable insight into the optimization of the molecular interactions of a drug–protein complex to achieve potency and selectivity of a drug candidate. For the successful application of SBDD in a drug development program, the impact of these structural modifications required to improve potency and selectivity must be considered in the context of balancing of a multitude of drug properties and other considerations that include solubility, bioavailability, metabolism, distribution, toxicology, chemical stability, and intellectual property space. The utility of structure-based design from the medicinal chemist’s perspective is described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abou-Gharbia, M. (2009) Discovery of innovative small molecule therapeutics. J. Med. Chem. 52, 2–9.

    Article  PubMed  CAS  Google Scholar 

  2. Ullman, F.; Boutellier, R. (2008) Drug discovery: are productivity metrics inhibiting motivation and creativity? Drug Disc. Today, 13(21/22), 997–1001.

    CAS  Google Scholar 

  3. Prentis, R. A., Lis, Y., Walker, S.R. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964-1985). Br. J. Clin. Pharm. (1988) 25, 387–396.

    CAS  Google Scholar 

  4. Wahling, M. Assessing the translatability of drug projects: what needs to be scored to predict success? Nat. Rev. Drug. Disc. (2009) 8, 541–546.

    Article  Google Scholar 

  5. Pidgeon, C., Ong, S., Liu, H., Qiu, X., Pidgeon, M., Dantzig, A.H., Munroe, J., Hornback, W.J., Kasher, J.S., Glunz, L., Szczerba, T. (1995) IAM chromatography: An in vitro screen for predicting drug membrane permeability. J. Med. Chem. 38, 590–594.

    Article  PubMed  CAS  Google Scholar 

  6. Lipinski,C.A., Lombardo, F., Dominy, B.W., Feeny, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. (1997) 23, 3–25.

    Article  CAS  Google Scholar 

  7. Wenlock, M.C. Rupert, P.A., Barton, P., Davis, A.M.; Leeson, P.D. (2003) A Comparison of Physicochemical Profiles of Development and Marketed Oral Drugs. J. Med. Chem. 46, 1250–1256.

    Article  PubMed  CAS  Google Scholar 

  8. Morphy, R. (2006) The influence of target family and functional activityon the physicochemical properties of pre-clinical compounds. J. Med. Chem. 49, 2969–2978.

    Article  PubMed  CAS  Google Scholar 

  9. Morhpy, R.; Rankovic, Z. (2006) The physicochemical challenges of designing multiple ligands. J. Med. Chem. 49(16), 4961–70.

    Article  Google Scholar 

  10. Morphy, R.; Rankovic, Z. (2009) Designing multiple ligands - medicinal chemistry strategies and challenges. Curr. Pharm. Des. 15(6), 587–600.

    Article  PubMed  CAS  Google Scholar 

  11. Gleeson, M.P. (2008) Generation of a set of simple, interpretable ADMET rules of thumb. J. Med. Chem. 51, 817–834.

    Article  PubMed  CAS  Google Scholar 

  12. Wager, T.T., Hou, X., Verhoest, P.R.; Villalobos, A. (2010) Moving beyond rules: The development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem. Neurosci. 1(6), 435–449.

    Article  CAS  Google Scholar 

  13. Wager, T.T., Ramalakshmi Y. Chandrasekaran, Hou, X., Troutman, M.D., Verhoest, P.R., Villalobos, V., Will, Y. (2010) Defining Desirable Central Nervous System Drug Space through the Alignment of Molecular Properties, in Vitro ADME, and Safety Attributes. ACS Chem. Neurosci. 1(6), 420–434.

    Article  CAS  Google Scholar 

  14. Hoffman, M., Monroe, D.M. (2007) Coagulation 2006: a modern view of hemostasis. Hematol. Oncol. Clin. North Am. 21(1), 1–11.

    Article  PubMed  Google Scholar 

  15. Ansell, J. (2007) Factor Xa or thrombin: is factor Xa a better target? J. Thromb. Haemostasis, 5(Suppl. 1), 60–64.

    Article  CAS  Google Scholar 

  16. Galanis, T.; Thomson, L.; Palladino, M.; Merli, G.J. (2011) New oral anticoagulants. J. Thromb.Thrombolysis 31, 310–320.

    Article  PubMed  CAS  Google Scholar 

  17. Liener, I.E. (1996) Trypsin inhibitors: concern for human nutrition or not? J. Nutr. 116, 920–923.

    Google Scholar 

  18. Herbert, J.M.; Bernat, A.; Dol. F.; Hérault, J.P.; Crépon, B.; Lormeau, J.C. (1996) DX 9065A a novel, synthetic, selective and orally active inhibitor of factor Xa: in vitro and in vivo studies. JPET, 276(3), 1030–1038.

    CAS  Google Scholar 

  19. Kaiser, B. (2003) DX-9065a, a direct inhibitor of factor Xa. Cardiovasc. Drug Rev. 21, 91–104.

    Article  PubMed  CAS  Google Scholar 

  20. Hinder, M.; Frick, A.; Jordaan, P.; Hesse, G.; Gebauer, A.; Maas, J.; Paccaly, A. (2006) Direct and rapid inhibition of factor Xa by otamixaban: a pharmacokinetic and pharmacodynamic investigation in patients with coronary artery disease. Clin. Pharmacol. Ther. 80(6), 691–702.

    Article  PubMed  CAS  Google Scholar 

  21. Cohen, M., Bhatt, D.L., Alexander, JH, Montalescot, G., Bode, C, Henry, T, Tamby, J.F., Saaiman, J, Simek, S., De Swart, J. (2007) Randomized, double-blind, dose-ranging study of otamixaban, a novel, parenteral, short-acting direct factor Xa inhibitor in percutaneous coronary intervention: the SEPIA-PCI trial. Circulation. 115(20), 2642–2651.

    Article  PubMed  CAS  Google Scholar 

  22. Sinha, U. (2002) ZK-807834. Berlex. Curr. Opin. Invest. Drugs. 3, 1736–1741.

    CAS  Google Scholar 

  23. Diaz-Ricart, M.; Castaner, J. (2002) ZK-807834: Anticoagulant factor Xa inhibitor. Drugs Future. 27, 748–752.

    Article  CAS  Google Scholar 

  24. Leitner, J.M.; Jilma, B.; Mayr, F.B.; Cardona, F.; Spiel, A.O.; Firbas, C.; Rathgen, K.; Stähl, H.; Schühly, U; Graefe-Mody, E.U. (2007) Pharmacokinetics and pharmacodynamics of the dual FII/FX inhibitor BIBT 986 in endotoxin-induced coagulation. Clin. Pharmacol. Ther. 81, 858–866.

    Article  PubMed  CAS  Google Scholar 

  25. Brandstetter, H.; Kühne, A.; Bode, W.; Huber, R.; von der Saal, W.; Wirthensohn, K.; Engh, R.A. (1996) X-ray structure of active site-inhibited clotting factor Xa. Implications for drug design and substrate recognition. J. Biol. Chem. 271, 29988–29992.

    Article  PubMed  CAS  Google Scholar 

  26. Young, T., Abel, R., Byungchan, K., Berne, B.J., Friesner, R.A. (2007) Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. 104(3), 808–813.

    Article  PubMed  CAS  Google Scholar 

  27. Pinto, D.J.P.; Smallheer, J.M.; Cheny, D.L.; Knabb, R.M.; Wexler, R.R. (2010) Factor Xa Inhibitors, Next-Generation Antithrombotic Agents. J. Med. Chem. 53, 6243–6274.

    Article  PubMed  CAS  Google Scholar 

  28. Hogben, C.A.M., Tocco, D.J., Brodie, B.B., Schanker, L.S. (1959) On the mechanism of intestinal absorption of drugs. J. Pharmacol. Exp. Ther. 125, 275–282.

    PubMed  CAS  Google Scholar 

  29. Palm, K.; Luthman, K.; Ros, J.; Gråsjö, J.; Artursson, P. (1999) Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J. Pharmacol. Exp. Ther. 291, 435–443.

    PubMed  CAS  Google Scholar 

  30. Quan, M.L., Pruitt, J.R., Ellis, C.D., Liauw, A.Y., Galemmo, R.A., Jr., Stouten, P.F.W., Wityak, J., Knabb, R.M., Thoolen, M.J.; Wong, P.C., Wexler, R.R. (1997) Bisbenzamidine isoxazoline derivatives as factor Xa inhibitors. Bioorg. Med. Chem. Lett. 7, 2813–2818.

    Article  Google Scholar 

  31. Quan, M.L., Liauw, A.Y., Ellis, C.D., Pruitt, J.R., Carini, D.J.; Bostrom, L.L., Huang, P.P., Harrison, K., Knabb, R.M., Thoolen, M.J., Wong, P.C., Wexler, R.R. (1999) Design and synthesis of isoxazoline derivatives as factor Xa inhibitors. J. Med. Chem. 42, 2752–2759.

    Article  PubMed  CAS  Google Scholar 

  32. Fevig, J.M., Pinto, D.J., Han, Q., Quan, M.L., Pruitt, J.R., Jacobson, I.C., Galemo, R.A., Wang, S., Orwat, M.J., Bostrom, L.L., Knabb, R.M., Wong, P.C., Lam, P.Y.S., Wexler, R.R. (2001) Synthesis and SAR of benzamidine factor Xa inhibitors containing a vicinally-substituted heterocyclic core. Bioorg. Med. Chem. Lett. 11, 641–645.

    Article  PubMed  CAS  Google Scholar 

  33. Lam, P.Y.S., Clark, C.G., Li, R., Pinto, D.J.P., Orwat, M.J., Galemmo, R.A., Fevig, J.M., Teleha, C.A., Alexander, R.S., Smallwood, A.M., Rossi, K.A., Wright, M.R., Bai, S.A., He, K., Leuttgen, J.M., Wong, P.C., Knabb, R.M., Wexler, R.R. (2003) Structure-based design of novel guanidine/benzamidine mimics: potent and orally bioavailable factor Xa inhibitors as novel anticoagulants. J. Med.Chem. 46, 4405–4418.

    Article  PubMed  CAS  Google Scholar 

  34. Bredt, D. S., Hwang, P. M., EGlatt, C. E., Lowenstein, C., Reed, R. R., Snyder, S. H. (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature. 351, 714.

    Google Scholar 

  35. Stuehr, D. J. (1997) Structure-function aspects in the nitric oxide synthases. Annu. Rev. Pharmacol. Toxicol. 37, 339.

    Article  PubMed  CAS  Google Scholar 

  36. Siddhanta, U., Presta, A., Fan, B., Wolan, D.D., Rousseau, D.L., Stuehr, D.J. (1998) Domain swapping in inducible nitric-oxide synthase. Electron transfer occurs between flavin and heme groups located on adjacent subunits in the dimer. J.Biol.Chem. 273(30), 18950–8.

    Article  PubMed  CAS  Google Scholar 

  37. Fischmann, T. H., Hruza, A., Niu, X. D., Fossetta, J. D., Lunn, C. A.; Dolphin, E., Prongay, A. J., Reichert, P., Lundell, D. J., Narula, S.K., Weber, P. C. (1999) Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat. Struct. Biol. 6, 233.

    Article  PubMed  CAS  Google Scholar 

  38. Cho, H. J., Xie, Q. W., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., Nathan, C. (1992) Calmodulin is a subunit of nitric oxide synthase from macrophages. J. Exp. Med. 176, 599.

    Article  PubMed  CAS  Google Scholar 

  39. Crane, B. R., Arvai, A. S., Gachhui, R., Wu, C., Ghosh, D. K., Getzoff, E. D., Stuehr, D. J., Tainer, J. A. (1997) The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science. 278, 425.

    Article  PubMed  CAS  Google Scholar 

  40. Crane, B. R., Arvai, A. S., Ghosh, D. K., Wu, C., Getzoff, E. D., Stuehr, D. J., Tainer. J. A. (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science. 279, 2121.

    Article  PubMed  CAS  Google Scholar 

  41. Raman, C. S., Li, H., Martásek, P., Král, V., Masters, B. S., Poulos, T. L. (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell. 95, 939.

    Article  PubMed  CAS  Google Scholar 

  42. Li, H., Raman, C. S., Glaser, C. B., Blasko, E., Young, T. A., Parkinson, J. F., Whitlow, M., Poulos, T. L. (1999) Crystal structures of zinc-free and -bound heme domain of human inducible nitric-oxide synthase. Implications for dimer stability and comparison with endothelial nitric-oxide Synthase. J. Biol. Chem. 274, 21276.

    Article  PubMed  CAS  Google Scholar 

  43. Li, H., Shimizu, H., Flinspach, M., Jamal, J., Yang, W., Xian, M., Cai, T., Wen, E. Z., Jia, Q., Wang, P. G., Poulos, T. L. (2002) The novel binding mode of N-alkyl-N′-hydroxyguanidine to neuronal nitric oxide synthase provides mechanistic insights into NO biosynthesis. Biochemistry. 41, 13868.

    Article  PubMed  CAS  Google Scholar 

  44. Garcin, E. D., Arvai, A. S., Rosenfeld, R. J., Kroger, M. D., Crane, B. R., Andersson, G., Andrews, G., Hamley, P. J., Mallinder, P. R., Nicholls, D. J., St-Gallay, S. A., Tinker, A. C. Gensmantel, N. P., Mete, A., Cheshire, D. R., Connolly, S., Stuehr, D. J., Aberg, A., Wallace, A. V., Tainer, J. A., Getzoff, E. D. (2008) Anchored plasticity opens doors for selective inhibitor design in nitric oxide Synthase. Nat. Chem. Biol. 4, 700.

    Article  PubMed  CAS  Google Scholar 

  45. Haitao, J., Huiying, L., Martásek, P., Roman, L. J., Poulos, T. L., Silverman, R. B. (2009) Discovery of highly potent and selective inhibitors of neuronal nitric oxide synthase by fragment hopping. J. Med. Chem., 52, 779.

    Article  Google Scholar 

  46. Erdal, E.P.; Litzinger, A.; Seo, J.; Zhu, Y.; Ji, H; Silverman, R.B. (2005) Selective neuronal nitric oxide synthase inhibitors. Curr. Top. Med. Chem. 5, 603.

    Article  PubMed  CAS  Google Scholar 

  47. Ashina, M.; Lassen, L.H.; Bendtsen, L.; Jensen, R.; Olesen, J. (1999) Effect of inhibition of nitric oxide Synthase on chronic tension-type headache: a randomized crossover trial. The Lancet 353, 287–289.

    Article  CAS  Google Scholar 

  48. Flinspach, H. Li, J. Jamal, W. Yang, H. Huang, J-M. Hah, J.A. Gomez-Vidal, E. A. Litzinger, R. B. Silverman and T. L. Poulos. (2004) Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase. Nat. Struct. Mol. Biol. 11(1), 54–9.

    Article  PubMed  CAS  Google Scholar 

  49. Raman, C.S., Li, H., Martásek, P., Southan, G., Masters, B.S., Poulos. T.L. (2001) Crystal structure of nitric oxide synthase bound to nitro indazole reveals a novel inactivation mechanism. Biochemistry. 40(45), 13448–55.

    Article  PubMed  CAS  Google Scholar 

  50. Xue, F.; Fang, J. Lewis, W.W.; Martásek, P. Roman, L.J. Silverman, R.B. (2010) Potent and selective neuronal nitric oxide Synthase inhibitors with improved cellular permeability. Bioorg. Med. Chem. Lett. 20, 554–557.

    Article  PubMed  CAS  Google Scholar 

  51. Maddaford, S.; Ramnauth, J.; Rakhit, S., Patman, J., Annedi, S. C., Andrews, J., Dove, P., Silverman, S., Renton, P. (2008) Preparation of tetrahydroquinolines and related compounds having NOS inhibitory activity. US 20080234237 A1.

    Google Scholar 

  52. Unpublished results.

    Google Scholar 

  53. Zheng, G.Z., Bhatia, P., Kolasa, T., Patel, M., El Kouhen, O.F., Chang, R., Uchic, M. E., Miller, L., Baker, S., Lehto, S.G., Honore, P., Wetter, J.M., Marsh, K.C., Moreland, R.B., Brioni, J.D., Stewart, A.O. (2006) Correlation between brain/plasma ratios and efficacy in neuropathic pain models of selective metabotropic glutamate receptor 1 antagonists. Bioorg. Med. Chem. Lett. 16, 4936–4940.

    Article  PubMed  CAS  Google Scholar 

  54. Finlayson, K., Witchel, H.J., McCulloch, J., Sharkey, J. (2004) Acquired QT interval prolongation and HERG: implications for drug discovery and development. Eur. J. Pharmacol. 500 (1-3), 129–42.

    Article  PubMed  CAS  Google Scholar 

  55. Cavalli, A., Poluzzi, E., De Ponti, F., Recanatini, M. (2002) Toward a pharmacophore for drugs inducing the long QT syndrome: Insights from a CoMFA study of hERG K+ channel blockers. J. Med. Chem. 2002, 45, 3844–3853.

    Article  Google Scholar 

  56. Ekins, S., Crumb, W.J., Sarazan, R.D., Wikel, J.H., Wrighton, S.A. (2002) Three-dimensional quantitative structure-activity relationship for inhibition of human ether-a-go-go-related gene potassium channel. J. Pharmacol. Exp. Ther. 301(2), 427–34.

    Article  PubMed  CAS  Google Scholar 

  57. Pearlstein, R.A., Vaz, R.J., Kang, J., Chen, X.L., Preobrazhenskaya, M., Shchekotikhin, A.E., Korolev, A.M., Lysenkova, L.N., Miroshnikova, O.V., Hendrix,J., Rampe, D. (2003) Characterization of hERG potassium channel inhibition using CoMSiA 3D QSAR and homology modeling approaches. Bioorg. Med. Chem. Lett. 13(10),1829–35.

    Article  PubMed  CAS  Google Scholar 

  58. Waring, M.J., Johnstone, C.A. (2007) A quantitative assessment of hERG liability as a function of lipophilicity. Bioorg. Med. Chem. Lett. 17, 1759–64.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, M.J. (2010) Lipophilicity in drug discovery. Expert Opin. Drug Discov. 5(3), 235–48.

    Article  Google Scholar 

  60. Hagmann, W.K. (2008) The many roles of fluorine in medicinal chemistry. J. Med. Chem. 51(15), 4359–4369.

    Article  PubMed  CAS  Google Scholar 

  61. Hale, J.J., Mills, S.G., MacCoss, M., Finke, P.E., Cascieri, M.A., Sadowski, S., Ber, E., Chicchi, G.G., Kurtz, M., Metzger, J., Eiermann, G., Tsou, N.N., Tattersall, F.D., Rupniak, N.M., Williams, A.R., Rycroft, W., Hargreaves, R., MacIntyre, D.E. (1998) Structural optimization affording 2-(R)-(1-(R)-3, 5-bis(trifluoromethyl)phenylethoxy)-3-(S)-(4-fluoro)phenyl-4- (3-oxo-1,2,4-triazol-5-yl)methylmorpholine, a potent, orally active, long-acting morpholine acetal human NK-1 receptor antagonist. J. Med. Chem. 41(23),4607–14.

    Article  PubMed  CAS  Google Scholar 

  62. Uetrecht, J. (2007) Idiosyncratic drug reactions: current understanding. Annu. Rev. Pharmacol. Toxicol. 47, 513–539.

    Article  PubMed  CAS  Google Scholar 

  63. Lin, L.S., Lanza, T.J. Jr, Jewell, J.P., Liu, P., Shah, S.K., Qi, H., Tong, X., Wang, J., Xu, S.S., Fong, T.M., Shen, C.P., Lao, J., Xiao, J.C., Shearman, L.P., Stribling, D.S., Rosko, K., Strack, A., Marsh, D.J., Feng, Y., Kumar, S., Samuel, K., Yin, W., Van der Ploeg, L.H., Goulet, M.T., Hagmann, W.K. (2006) Discovery of N-[(1S,2S)-3-(4-Chlorophenyl)-2- (3-cyanophenyl)-1-methylpropyl]-2-methyl-2- {[5-(trifluoromethyl)pyridin-2-yl]oxy}propanamide (MK-0364), a novel, acyclic cannabinoid-1 receptor inverse agonist for the treatment of obesity. J. Med.Chem. 49(26), 7584–7.

    Article  PubMed  CAS  Google Scholar 

  64. Sturino, C.F., O’Neill,G., Lachance, N., Boyd, M., Berthelette, C., Labelle, M., Li, L., Roy, B., Scheigetz, J., Tsou, N., Aubin, Y., Bateman, K.P., Chauret, N., Day S.H., Lévesque, J.F., Seto, C., Silva, J.H., Trimble, L.A., Carriere, M.C., Denis, D., Greig, G., Kargman, S., Lamontagne, S., Mathieu, M.C., Sawyer, N., Slipetz, D., Abraham, W.M., Jones, T., McAuliffe, M., Piechuta, H., Nicoll-Griffith, D.A., Wang, Z., Zamboni, R., Young, R.N., Metters, K.M. (2007) Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydro­cyclopenta[b]indol-3-yl]-acetic acid (MK-0524). J. Med. Chem. 50(4),794–806.

    Article  PubMed  CAS  Google Scholar 

  65. Zanda, M. (2004) Trifluoromethyl group: an effective xenobiotic function for peptide backbone modifications. New J. Chem. 28, 1401–1411.

    Article  CAS  Google Scholar 

  66. Fedorov, R., Vasan, R., Ghosh, D.K., Schlichting, L. (2004) Structures of nitric oxide synthase isoforms complex with the inhibitor AR-R17477 suggest a rational basis for specificity and inhibitor design. Proc. Natl. Acad. Sci. 101(16), 5892–97.

    Article  PubMed  CAS  Google Scholar 

  67. Russell, R.J., Haire, L.F., Stevens, D.J., Collins, P.J., Lin, Y.P., Blackburn, G.M., Hay, A.J., Gamblin, S.J., Skehel, J.J. (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 443(7107), 45–9.

    Article  PubMed  CAS  Google Scholar 

  68. Skrzypcazk-Jankun, E., Borbulevych, O.Y., Zavodsky, M.I., Baranski, M.R., Padmanabhan, K., Petricek, V., Jankun, J. (2006) Effect of crystal freezing and small-molecule binding on internal cavity size in a large protein: X-ray and docking studies of lipoxygenase at ambient and low temperature at 2.0 Å resolution. Acta Crystalogr. D Biol. Crystallogr. 62(Pt 7), 766–75.

    Google Scholar 

  69. Davis, A.M., St-Gallay, S.A., Kleywegt, G.J. (2008) Limitations and lessons in the use of X-ray structural information in drug design. Drug. Disc.Today. 13, 831–41.

    Article  CAS  Google Scholar 

  70. Seo, J., Igarashi, J., Li, H., Martásek, P., Roman, L.J., Poulos, T.L., Silverman, R.B. (2007) Structure-based design and synthesis of N(omega)-nitro-L-arginine-containing peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. Displacement of the heme structural water. J. Med. Chem. 50, 2089–99.

    Article  PubMed  CAS  Google Scholar 

  71. Gardner, C. R.; Walsh, C. T.; Almarsson, O. (2004) Drugs as materials: valuing physical form in drug discovery. Nat. Rev. Drug Discov. 3(11), 926–34.

    Article  PubMed  CAS  Google Scholar 

  72. Maddox, J. (1988) Crystals from first principles. Nature. 335, 201.

    Article  Google Scholar 

  73. Ball, P. (1996) Scandal of crystal design. Nature. 381, 20, 648–650.

    Article  CAS  Google Scholar 

  74. Lipinski, C. (2002) Poor Aqueous Solubility – an Industry Wide Problem in Drug Discovery. Am. Pharm. Rev. 5, 82–85.

    Google Scholar 

  75. Bak, A.; Gore, A.; Yanez, E.; Stanton, M.; Tufekcic, S.; Syed, R.; Akrami, A.; Rose, M.; Surpaneni, S.; Bostick, T.; King, A.; Neervannan, S.; Ostovic, D.; Koparkar, A. (2008) The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. J. Pharm. Sci. 97(9), 3942–3956.

    Article  PubMed  CAS  Google Scholar 

  76. Stanton, M.K., Tufekcic, S., Morgan, C., Bak, A. (2009) Drug Substance and Former Structure Property Relationships in 15 Diverse Pharmaceutical Co-Crystals Cryst. Growth Des. 9(3), 1344–52.

    Article  CAS  Google Scholar 

  77. Shan, N.; Zaworotko, M. J. (2008) The role of cocrystals in pharmaceutical science. Drug Disc. Today. 13 (9-10), 440–6.

    Article  CAS  Google Scholar 

  78. Zaworotko, M.J. (2007) Molecules to Crystals, Crystals to Molecules … and Back Again? Cryst. Growth Des. 7(1), 4–9.

    Article  CAS  Google Scholar 

  79. Cheney, M. L., Shan, N., Healey, E.R., Hanna, M., Wojtas, L., Zaworotko, M. J., Sava, V., Song, S., Sanchez-Ramos, J. R. (2010) Effects of Crystal Form on Solubility and Pharmacokinetics: A Crystal Engineering Case Study of Lamotrigine. Cryst. Growth Des. 10, 394–405.

    Article  CAS  Google Scholar 

  80. Stanton, M., Bak, A. (2008) Physicochemical Properties of Pharmaceutical Co-Crystals: A Case Study of Ten AMG 517 Co-Crystals. Cryst. Growth Des. 8(10), 3856–62.

    Article  CAS  Google Scholar 

  81. Stahl, P.H.; Wermuth, C.G.; Eds. (2002) Handbook of Pharmacetuical Salts: Properties, Selection and Use; Wiley: Weinheim, Germany.

    Google Scholar 

  82. Childs, S. L., Chyall, L. J., Dunlap, J. T., Smolenskaya, V. N., Stahly, B. C. Stahly, G. P. (2004) Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J. Am. Chem. Soc. 126 (41), 13335–42.

    Article  PubMed  CAS  Google Scholar 

  83. Waring, M.J. (2010) Lipophilicity in drug discovery. Expert Opin. Drug Discov. 5(3), 235–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn P. Maddaford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Maddaford, S.P. (2012). A Medicinal Chemistry Perspective on Structure-Based Drug Design and Development. In: Tari, L. (eds) Structure-Based Drug Discovery. Methods in Molecular Biology, vol 841. Humana Press. https://doi.org/10.1007/978-1-61779-520-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-520-6_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-519-0

  • Online ISBN: 978-1-61779-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics