Skip to main content

Structure-Based Drug Design on Membrane Protein Targets: Human Integral Membrane Protein 5-Lipoxygenase-Activating Protein

  • Protocol
  • First Online:
Book cover Structure-Based Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 841))

Abstract

Leukotrienes are biologically active lipid metabolites of arachidonic acid that are involved in inflammation and play a significant role in respiratory and cardiovascular disease. The integral nuclear membrane protein 5-lipoxygenase-activating protein (FLAP) is essential for leukotriene biosynthesis in response to cellular activation. The crystal structures of human FLAP with two inhibitors were recently determined. Inhibitors are bound within the lipid-exposed portion of FLAP, and the unexpected location of the inhibitor-binding site suggests a transport mechanism for arachidonic acid and provides functional insights into leukotriene biosynthesis. This chapter describes how this human integral membrane crystal structure was solved by pushing the limits of low-resolution structure determination and refinement, demonstrating how a low-resolution structure can impact biology and chemistry, and discusses future opportunities for structure-based drug design for this therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Funk, C.D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  2. Funk, C.D. (2005) Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Drug Disc 4, 664–672.

    Article  CAS  Google Scholar 

  3. Evans, J.F., Ferguson, A.D., Mosley, R.T., and Hutchinson, J.H. (2008) What’s all the FLAP about?: 5-lipoxygenase-activating protein inhibitors for inflammatory diseases. Trends Pharmacol Sci 292, 72–78.

    Article  Google Scholar 

  4. Riccioni, G., Capra, V., D’Orazio, N., Bucciarelli, T., and Bazzano, L.A. (2008) Leukotriene ­modifiers in the treatment of cardiovascular diseases. J Leukoc Biol. 8, 1374–1378.

    Article  Google Scholar 

  5. Rådmark, O., and Samuelsson, B. (2009). 5-Lipoxygenase: mechanisms of regulation. J Lipid Res 50, 40–45.

    Article  Google Scholar 

  6. Sampson, A.P. (2009) FLAP inhibitors for the treatment of inflammatory diseases. Curr Opin Invest Drugs 10, 1163–1172.

    CAS  Google Scholar 

  7. Evans, J., Spencer, D., Zweifach, A., and Leslie, C. (2001) Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J Biol Chem 276, 30150–30160.

    Article  PubMed  CAS  Google Scholar 

  8. Luo, M., Flamand, N., and Brock, T. (2006) Metabolism of arachidonic acid to eicosanoids within the nucleus. Biochim Biophys Acta 1761, 618–625.

    PubMed  CAS  Google Scholar 

  9. Dixon, R.A.F. et al. (1990) Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature 343, 282–284.

    Article  PubMed  CAS  Google Scholar 

  10. Miller, D.K. et al. (1990) Identification and isolation of a membrane protein necessary for leukotriene production. Nature 343, 278–281.

    Article  PubMed  CAS  Google Scholar 

  11. Brock, T.G., McNish, R.W., and Peters-Golden, M. (1995) Translocation and leukotriene synthetic capacity of nuclear 5-lipoxygenase in rat basophilic leukemia cells and alveolar macrophages. J Biol Chem 270, 21652–21658.

    Article  PubMed  CAS  Google Scholar 

  12. Folco, G., and Murphy, R.C. (2006) Eicosanoid transcellular biosynthesis: from cell-cell interactions to in vivo tissue responses. Pharmacol Rev 58, 375–388.

    Article  PubMed  CAS  Google Scholar 

  13. Gillard, J. et al. (1989) L-663,536 (MK-886) (3-[1-(4-chlorobenzyl)-3-t-butyl-thio-5-isopropylindol-2-yl]-2,2-dimethylpropanoic acid), a novel, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol 67, 456–464.

    Article  PubMed  CAS  Google Scholar 

  14. Müller-Peddinghaus, R. et al. (1993) BAY X1005, a new inhibitor of leukotriene synthesis: In vivo inflammation pharmacology and pharmacokinetics. J Pharm Exp Ther 267, 51–57.

    Google Scholar 

  15. Brideau, C. et al. (1992) Pharmacology of MK-0591 (3-[1-(4-chlorobenzyl)-3-(t-butylthio)-5-(quinolin-2-ylmethoxy)-indol-2-yl]-2,2-dimethylpropanoic acid), a potent, orally active leukotriene biosynthesis inhibitor. Can J Physiol Pharmacol 70, 799–807.

    Article  PubMed  CAS  Google Scholar 

  16. Prasit, P. et al. (1993) A new class of leukotriene biosynthesis inhibitor: the development of MK-0591. J Lipid Mediat 6, 239–244.

    PubMed  CAS  Google Scholar 

  17. Evans, J.F. et al. (1991) 5-Lipoxygenase-activating protein is the target of a quinoline class of leukotriene synthesis inhibitors. Mol Pharmacol 40, 22–27.

    PubMed  CAS  Google Scholar 

  18. Woods, J. et al. (1993) 5-lipoxygenase and 5-lipoxygenase-activating protein are localized in the nuclear envelope of activated human leukocytes. J Exp Med 178, 1935–1946.

    Article  PubMed  CAS  Google Scholar 

  19. Mancini, J. et al. (1993) 5-lipoxygenase-activating protein is an arachidonate binding protein. FEBS Letters 318, 277–281.

    Article  PubMed  CAS  Google Scholar 

  20. Mancini, J., Coppolino, M., Klassen, J., Charleson, S., and Vickers, P. (1994) The binding of leukotriene biosynthesis inhibitors to site-directed mutants of human 5-lipoxygenase-activating protein. Life Sci 54, 137–142.

    Article  Google Scholar 

  21. Rouzer, C., Ford-Hutchinson, A., Morton, H., and Gillard, J. (1990) MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J Biol Chem 265, 1436–1442.

    PubMed  CAS  Google Scholar 

  22. Jakobsson, P.J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., and Persson, B. (1999) Common structural features of MAPEG - a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. Protein Sci 8, 689–692.

    Article  PubMed  CAS  Google Scholar 

  23. Bresell, A. et al. (2005). Bioinformatic and enzymatic characterization of the MAPEG superfamily. FEBS J 272, 1688–1703.

    Article  PubMed  CAS  Google Scholar 

  24. Plante, H., Picard, S., Mancini, J., and Borgeat, P. (2006) 5-Lipoxygenase-activating protein homodimer in human neutrophils: evidence for a role in leukotriene biosynthesis. Biochem J 393, 211–218.

    PubMed  CAS  Google Scholar 

  25. Ferguson, A.D. et al. (2007) Crystal structure of inhibitor bound 5-lipoxygenase-activating protein. Science 317, 510–512.

    Article  PubMed  CAS  Google Scholar 

  26. Doublié, S. (1997) Preparation of selenomethionyl proteins for phase determination. Meth Enzymol 276, 523–530.

    Article  PubMed  Google Scholar 

  27. Charleson, S. et al. (1992) Characterization of a 5-lipoxygenase-activating protein binding assay: Correlation of affinity for 5-lipoxygenase-activating protein with leukotriene synthesis inhibition. Mol Pharmacol 41, 873–879.

    PubMed  CAS  Google Scholar 

  28. Vickers, P.J. et al. (1992) Identification of amino acid residues of 5-lipoxygenase-activating protein essential for the binding of leukotriene biosynthesis inhibitors. Mol Pharmacol 42, 94–102.

    PubMed  CAS  Google Scholar 

  29. Seddon, A.M., Curnow, P., and Booth, P.J. (2004). Membrane proteins, lipids and detergents: not just a soap opera. Biochimica et Biophysica Acta 1666, 105–117.

    Article  PubMed  CAS  Google Scholar 

  30. Palsdottir, H., and Hunte, C. (2004). Lipids in membrane protein structures Biochimica et Biophysica Acta 1666, 2–18.

    CAS  Google Scholar 

  31. Lee, A.G. (2004). How lipids affect the activities of integral membrane proteins. Biochimica et Biophysica Acta 1666, 62–87.

    Article  PubMed  CAS  Google Scholar 

  32. Derewenda, Z.S. (2004). Rational protein crystallization by mutational surface engineering. Structure 12, 529–5535.

    Article  PubMed  CAS  Google Scholar 

  33. Derewenda, Z.S., and Vekilov, P.G. (2006). Entropy and surface engineering in protein crystallization. Acta Cryst D 62, 116–124.

    Article  Google Scholar 

  34. Xu, S. et al. (2007) Expression, purification and crystallization of human 5-lipoxygenase-activating protein with leukotriene-biosynthesis inhibitors. Acta Cryst F 63, 1054–1057.

    Article  Google Scholar 

  35. Hendrickson, W.A. (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58.

    Article  PubMed  CAS  Google Scholar 

  36. Kabsch, W. (2010) XDS. Acta Cryst D 66, 125–132.

    Article  Google Scholar 

  37. Bricogne, G., Vonrhein, C., Flensburg, C., Schiltz, M., and Paciorek, W. (2003) Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. Acta Cryst D 59, 2023–2030.

    Article  CAS  Google Scholar 

  38. Vonrhein, C., Blanc, E., Roversi, P., and Bricogne, G. (2006). Automated structure solution with autoSHARP. Meth Mol Biol 364, 215–230.

    Google Scholar 

  39. Morris, R.J., Perrakis, A., and Lamzin, V.S. (2003) ARP/wARP and automatic interpretation of protein electron density maps. Meth Enzymol 374, 229–244.

    Article  PubMed  CAS  Google Scholar 

  40. Morris, R.J. et al. (2004) Breaking good resolutions with ARP/wARP. J Synchrotron Radiat 11, 56–59.

    Article  PubMed  CAS  Google Scholar 

  41. Cohen, S.X. et al. (2004) Towards complete validated models in the next generation of ARP/wARP. Acta Cryst D 60, 2222–2229.

    Article  Google Scholar 

  42. Delabarre, B., and Brunger, A.T. (2006) Considerations for the refinement of low-resolution crystal structures. Acta Cryst D 62, 923–932.

    Article  Google Scholar 

  43. Blanc, E. et al. (2004) Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Cryst D 60, 2210–2221.

    Article  CAS  Google Scholar 

  44. Andersson, C., Weinander, R., Lundqvist, G., DePierre, J.W., and Morgenstern, R. (1994) Functional and structural membrane topology of rat liver microsomal glutathione transferase. Biochim Biophys Acta 1204, 298–304.

    Article  PubMed  CAS  Google Scholar 

  45. Weinander, R. et al. (1997) Structural and functional aspects of rat microsomal glutathione transferase. The roles of cysteine 49, arginine 107, lysine 67, histidine, and tyrosine residues. J Biol Chem 272, 8871–8877.

    Article  PubMed  CAS  Google Scholar 

  46. Lam, B.K., Penrose, J.F., Xu, K., Baldasaro, M.H., and Austen, K.F. (1997) Site-directed mutagenesis of human leukotriene C4 synthase. J Biol Chem 272, 13923–13928.

    Article  PubMed  CAS  Google Scholar 

  47. Ago, H. et al. (2007) Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 448, 609–612.

    Article  PubMed  CAS  Google Scholar 

  48. Molina, D.M. et al. (2007) Structural basis for synthesis of inflammatory mediators by human leukotriene C4 synthase. Nature 448, 613–616.

    Article  CAS  Google Scholar 

  49. von Heijne, G. (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7, 909–918.

    Article  Google Scholar 

  50. Holm, P. et al. (2006) Structural basis for detoxification and oxidative stress protection in membranes. J Mol Biol 360, 934–945.

    Article  PubMed  CAS  Google Scholar 

  51. Schmidt-Krey, I. et al. (2004) Human leukotriene C(4) synthase at 4.5 A resolution in projection. Structure 12, 2009–2014.

    Article  PubMed  CAS  Google Scholar 

  52. Thoren, S. et al. (2003) Human microsomal prostaglandin E synthase-1: purification, functional characterization, and projection structure determination. J Biol Chem 278, 22199–22209.

    Article  PubMed  CAS  Google Scholar 

  53. Vickers, P. et al. (1993) Amino acid residues of 5-lipoxygenase-activating protein critical for the binding of leukotriene biosynthesis inhibitors. J Lipid Mediat 6, 31–42.

    PubMed  CAS  Google Scholar 

  54. Mancini, J.A., Waterman, H., and Riendeau, D. (1998) Cellular oxygenation of 12-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid by 5-lipoxygenase is stimulated by 5-lipoxygenase-activating protein. J Biol Chem 273, 32842–32847.

    Article  PubMed  CAS  Google Scholar 

  55. Kolasa, T. et al. (2000) Symmetrical Bis(heteroarylmethoxyphenyl)alkylcarboxylic acids as inhibitors of leukotriene biosynthesis. J Med Chem 43, 3322–3334.

    Article  PubMed  CAS  Google Scholar 

  56. Macdonald, D. et al. (2008) Substituted 2,2-bisaryl-bicycloheptanes as novel and potent inhibitors of 5-lipoxygenase activating protein. Bioorg Med Chem Lett 18, 2023–2027.

    Article  PubMed  CAS  Google Scholar 

  57. Hutchinson, J.H. et al. (2009) 5-lipoxygenase-activating protein inhibitors: development of 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1 H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103). J Med Chem 52, 5803–5815.

    Article  PubMed  CAS  Google Scholar 

  58. Lorrain, D.S. et al. (2009) Pharmacological characterization of 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1 H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103), a novel selective 5-lipoxygenase-activating protein inhibitor that reduces acute and chronic inflammation. J Pharmacol Exp Ther 331, 1042–1050.

    Article  PubMed  CAS  Google Scholar 

  59. Lorrain, D.S. et al. (2010) Pharmacology of AM803, a novel selective five-lipoxygenase-activating protein (FLAP) inhibitor in rodent models of acute inflammation. Eur J Pharmacol 640, 211–218.

    Article  PubMed  CAS  Google Scholar 

  60. Stock, N. et al. (2010) 5-Lipoxygenase-activating protein inhibitors. Part 2: 3-{5-((S)-1-Acetyl-2,3-dihydro-1 H-indol-2-ylmethoxy)-3-tert-butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-1 H-indol-2-yl}-2,2-dimethyl-propionic acid (AM679)-a potent FLAP inhibitor. Bioorg Med Chem Lett 20, 213–217.

    Article  PubMed  CAS  Google Scholar 

  61. Cordes, F., Bright, J., and Sansom, M. (2002) Proline-induced distortions of transmembrane helices. J Mol Biol 323, 951–960.

    Article  PubMed  CAS  Google Scholar 

  62. Charleson, S. et al. (1994) Structural requirements for the binding of fatty acids to 5-lipoxygenase-activating protein. Eur J Pharmacol 267, 275–280.

    Article  PubMed  CAS  Google Scholar 

  63. Flamand, N., Lefebvre, J., Surette, M., Picard, S., and Borgeat, P. (2006) Arachidonic acid regulates the translocation of 5-lipoxygenase to the nuclear membranes in human neutrophils. J Biol Chem 281, 129–136.

    Article  PubMed  CAS  Google Scholar 

  64. Kulkarni, S., Das, S., Funk, C., Murray, D., and Cho, W. (2002) Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase. J Biol Chem 277, 13167–13174.

    Article  PubMed  CAS  Google Scholar 

  65. Soberman, R., and Christmas, P. (2003) The organization and consequences of eicosanoid signaling. J Clin Invest 111, 1107–1113.

    PubMed  CAS  Google Scholar 

  66. Mandal, A.K. et al. (2004) The membrane organization of leukotriene synthesis. Proc Nat Acad Sci USA 101, 6587–6592.

    Article  PubMed  CAS  Google Scholar 

  67. Strid, T., Svartz, J., Franck, N., Hallin, E., Ingelsson, B., Söderström, and M., Hammarström, S. (2009) Distinct parts of leukotriene C(4) synthase interact with 5-lipoxygenase and 5-lipoxygenase activating protein. Biochem Biophys Res Commun 381, 518–522.

    Article  PubMed  CAS  Google Scholar 

  68. Newcomer, M.E., and Gilbert, N.C. (2010) Location, location, location: compartmentalization of early events in leukotriene biosynthesis. J Biol Chem 285, 25109–25114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Ferguson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ferguson, A.D. (2012). Structure-Based Drug Design on Membrane Protein Targets: Human Integral Membrane Protein 5-Lipoxygenase-Activating Protein. In: Tari, L. (eds) Structure-Based Drug Discovery. Methods in Molecular Biology, vol 841. Humana Press. https://doi.org/10.1007/978-1-61779-520-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-520-6_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-519-0

  • Online ISBN: 978-1-61779-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics