Skip to main content

The Utility of Structural Biology in Drug Discovery

  • Protocol
  • First Online:
Structure-Based Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 841))

Abstract

Access to detailed three-dimensional structural information on protein drug targets can streamline many aspects of drug discovery, from target selection and target product profile determination, to the discovery of novel molecular scaffolds that form the basis of potential drugs, to lead optimization. The information content of X-ray crystal structures, as well as the utility of structural methods in supporting the different phases of the drug discovery process, are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pharmaceutical Manufacturers Association (1993) ‘Facts at a Glance’, Washington DC.

    Google Scholar 

  2. Grabowski, H. J. G. and Vernon, J. M. (1994) Returns to R&D on new drug introductions in the 1980s. J. Health Econ. 13, 282–406.

    Article  Google Scholar 

  3. Gustafsson, D., Byland, R., Antonsson, T., Nilsson, I., Nystrom, J. –E, Eriksson, E., Bredberg, U. and Teger-Nilsson, A. –C. (2004) A new oral anticoagulant: the 50-year challenge. Nature Rev. Drug. Discov. 3, 649–659.

    Google Scholar 

  4. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. and Read, R. J. (2007) Phaser crystallographic software. J. Appl. Cryst. 40, 658–674.

    Article  CAS  Google Scholar 

  5. Blundell, T. L. and Johnson, L. N. (1976) In Protein Crystallography. Academic Press, New York.

    Google Scholar 

  6. Stout, G. H. and Jensen, L. H. (1989) In X-ray Structure Determination: A Practical Guide. 2nd ed. Wiley, New York.

    Google Scholar 

  7. Drenth J. (1999) In Principles of protein x-ray crystallography. 2nd ed. Springer, New York.

    Google Scholar 

  8. Stout, G. H. and Jensen, L. H. (1989) In X-ray Structure Determination: A Practical Guide. 2nd ed. Wiley, New York, Chapters 7–9.

    Google Scholar 

  9. Winn, M. D., Murshudov G. N. and Papiz, M. Z. (2003) Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374, 300–321.

    Article  PubMed  CAS  Google Scholar 

  10. Drenth J. (1999) In Principles of protein x-ray crystallography. 2nd ed. Springer, New York, pp. 89–90.

    Google Scholar 

  11. Emsley, P. and Cowtan K. (2004) Coot: model-building tools for molecular graphics Acta Cryst. D60, 2126–2132.

    CAS  Google Scholar 

  12. Brünger, A. T. (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475.

    Article  PubMed  Google Scholar 

  13. Jia, Z., Vandonselaar, M., Quail, J. W. and Delbaere, L. T. J. (1993) Active-center torsion-angle strain revealed in 1.6 Å-resolution structure of histidine-containing phosphocarrier protein. Nature 361, 94–97.

    Article  PubMed  CAS  Google Scholar 

  14. Bersio, R., Lazmin, V. S., Sica, F., Wilson, K. S., Zagari, A. and Mazzarella, L. (1999) Protein titration in the crystal state. J. Mol. Biol. 292, 845–854.

    Article  Google Scholar 

  15. Payne, D. J., Gwynn, M. N., Holmes, D. J. and Pompliano, D. L. (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug. Discov. 6, 29–40.

    Article  PubMed  CAS  Google Scholar 

  16. Champoux, J. J. (2001) DNA topoisomerases: structure, function and mechanism. Annu. Rev. Biochem. 70, 369–413.

    Article  PubMed  CAS  Google Scholar 

  17. Peng, H. and Marians, K. J. (1993) Escherichia coli topoisomerase IV. Purification, characterization, subunit structure and subunit interactions. J. Biol. Chem. 268, 24481–24490.

    PubMed  CAS  Google Scholar 

  18. Wolfson, J. S. and Hooper, D. C. (1985) The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob. Agents Chemother. 28, 581–586.

    PubMed  CAS  Google Scholar 

  19. Oblak, M., Kotnik, M. and Solmajer, T. (2007) Discovery and Development of ATPase Inhibitors of DNA Gyrase as Antibacterial Agents. Curr. Med. Chem. 14, 2033–2047.

    Article  PubMed  CAS  Google Scholar 

  20. Kanehisha, M., Goto, S., Kawashima, S., Okuno, Y. and Hattori, M. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, 277–280.

    Article  Google Scholar 

  21. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  22. Hann, M.M., Leach, A.R. and Harper, G. (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J.Chem.Inf.Comput.Sci. 41, 856–864.

    Article  PubMed  CAS  Google Scholar 

  23. Labute, P. and Clark A. M. (2007) 2D Depiction of Protein-Ligand Complexes. J. Chem. Inf. Model 47, 1933–1944.

    Article  PubMed  Google Scholar 

  24. Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J. and Skehel, J. J. (2006) The structure of avian flu neuraminidase suggests new opportunities for drug design. Nature. 443, 45–49.

    Article  PubMed  CAS  Google Scholar 

  25. von-Itzstein, M., Wu, W. Y., Kok, G. B., Pegg, M. S., Dyason, J. C., Jin, B., Van Phan, T., Smythe, M. L., White, H. F., Oliver, S. W., Colman, P. M., Varghese, J. N., Ryan, D. M., Woods, R. C., Bethell, R. C., Hotham, V. J., Cameron, J. M and Penn, C. R. (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 363, 418–423.

    Google Scholar 

  26. (2001) In Physicians’ Desk Reference. 55th ed. Medical Economics Company Inc. Montvale, NJ, p.1454.

    Google Scholar 

  27. Kim, C. U. Lew, W., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Chen, M. S., Mendel, D. B., Tai, C. Y., Laver, W. G. and Stevens, R. C. (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active-site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119, 681–690.

    Article  PubMed  CAS  Google Scholar 

  28. Linnekin, D. (1999) Early signaling pathways activated by c-Kit in hematopoietic cells. Int. J. of Biochem. Cell Biol. 31, 1053–1074.

    Article  CAS  Google Scholar 

  29. Hirota, S., Isozaki, K., Moriyama, Y., Hashimoto, K., Nishida, T., Ishiguro, S., Kawano, K., Hanada, M., Kurata, A., Takeda, M., Tunio, G. M., Matsuzawa, Y., Kanakura, Y., Shinomura, Y. and Kitamura, Y. (1998) Gain of function mutations of c-Kit in human gastrointestinal stromal tumors. Science. 279, 577–580.

    Article  PubMed  CAS  Google Scholar 

  30. Mol, C. D., Dougan, D. R., Schneider, T. R., Skene, R. J., Krause, M. L., Schiebe, D. N., Snell, G. P., Zou, H., Sang, B. –C. and Wilson, K. P. (2004) Structural Basis for the autoinhibition and ST-571 inhibition of c-Kit tyrosine kinase. J. Biol. Chem. 279, 31655–31663.

    Google Scholar 

  31. O’Dwyer, M. E., Mauro, M. J., and Druker, B. J. (2003) STI571 as a targeted therapy for CML. Cancer Investig. 3, 429–438.

    Article  Google Scholar 

  32. Buchdunger, E., Cioffi, C. L., Law, N., Stover, D., Ohno-Jones, S., Druker, B. J. and Lydon, N. B. (2000) Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J. Pharmacol. Exp. Ther. 295, 139–145.

    PubMed  CAS  Google Scholar 

  33. Khochbin, S., Verdel, A., Lemercier, C. and Seigneurin-Berny, D. (2001) Functional significance of histone deacetylase diversity. Curr. Opin. Genet. Dev. 11, 162–166.

    Article  PubMed  CAS  Google Scholar 

  34. Marks, P. A. and Xu, W. S. (2009) Histone-deacetylase inhibitors: potential in cancer therapy. J. Cell Biochem. 107, 600–608.

    Article  PubMed  CAS  Google Scholar 

  35. Somoza, J. R., Skene, R. J., Katz, B. A., Mol, C. D., Ho, J. D., Jennings, A. J., Luong, C., Arvai, A., Buggy, J. J., Chi, E., Tang, J., Sang, B. C., Verner, E., Wynands, R., Leahy, E. M., Dougan, D. R., Snell, G., Navre, M., Knuth, M. W., Swanson, R. V., McRee, D. E. and Tari, L. W. (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 12, 1–20.

    Article  Google Scholar 

  36. Harris, T. K. and Turner, G. J. (2002) Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. IUBMB Life 53, 85–98.

    Article  PubMed  CAS  Google Scholar 

  37. Dullweber, F., Stubbs, M. T., Musil, D., Sturzebecher, J. and Klebe, G. (2001) Factorising ligand affinity: A combined thermodynamic and crystallographic study of trypsin and thrombin inhibition. J. Mol. Biol. 313, 593–614.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie W. Tari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tari, L.W. (2012). The Utility of Structural Biology in Drug Discovery. In: Tari, L. (eds) Structure-Based Drug Discovery. Methods in Molecular Biology, vol 841. Humana Press. https://doi.org/10.1007/978-1-61779-520-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-520-6_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-519-0

  • Online ISBN: 978-1-61779-520-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics