Skip to main content

Structural Variation in Subtelomeres

  • Protocol
  • First Online:
Genomic Structural Variants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 838))

Abstract

Subtelomeres are an incredibly dynamic part of the human genome located at the ends of chromosomes just proximal to telomere repeats. Although subtelomeric variation contributes to normal polymorphism in the human genome and is a by-product of rapid evolution in these regions, rearrangements in subtelomeres can also cause intellectual disabilities and birth defects, making robust methods of detecting copy number variation in chromosome ends a must for cytogenetics labs. In recent years, methods for detecting structural variation in subtelomeres have moved from fluorescence in situ hybridization (FISH) to array technology; however, FISH is still necessary to determine the chromosomal structure of subtelomeric gains and losses identified by arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey, J. A., Gu, Z., Clark, R. A., Reinert, K., Samonte, R. V., Schwartz, S., Adams, M. D., Myers, E. W., Li, P. W., and Eichler, E. E. (2002) Recent segmental duplications in the human genome. Science 297, 1003–7.

    Article  PubMed  CAS  Google Scholar 

  2. Linardopoulou, E. V., Williams, E. M., Fan, Y., Friedman, C., Young, J. M., and Trask, B. J. (2005) Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature 437, 94–100.

    Article  PubMed  CAS  Google Scholar 

  3. Trask, B. J., Friedman, C., Martin-Gallardo, A., Rowen, L., Akinbami, C., Blankenship, J., Collins, C., Giorgi, D., Iadonato, S., Johnson, F., Kuo, W. L., Massa, H., Morrish, T., Naylor, S., Nguyen, O. T., Rouquier, S., Smith, T., Wong, D. J., Youngblom, J., and van den Engh, G. (1998) Members of the olfactory receptor gene family are contained in large blocks of DNA duplicated polymorphically near the ends of human chromosomes. Hum Mol Genet 7, 13–26.

    Article  PubMed  CAS  Google Scholar 

  4. Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., Cho, E. K., Dallaire, S., Freeman, J. L., Gonzalez, J. R., Gratacos, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J. R., Marshall, C. R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M. J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D. F., Estivill, X., Tyler-Smith, C., Carter, N. P., Aburatani, H., Lee, C., Jones, K. W., Scherer, S. W., and Hurles, M. E. (2006) Global variation in copy number in the human genome. Nature 444, 444–54.

    Article  PubMed  CAS  Google Scholar 

  5. Ballif, B. C., Sulpizio, S. G., Lloyd, R. M., Minier, S. L., Theisen, A., Bejjani, B. A., and Shaffer, L. G. (2007) The clinical utility of enhanced subtelomeric coverage in array CGH. Am J Med Genet A 143, 1850–7.

    Google Scholar 

  6. Martin, C. L., Nawaz, Z., Baldwin, E. L., Wallace, E. J., Justice, A. N., and Ledbetter, D. H. (2007) The evolution of molecular ruler analysis for characterizing telomere imbalances: from fluorescence in situ hybridization to array comparative genomic hybridization. Genet Med 9, 566–73.

    Article  PubMed  CAS  Google Scholar 

  7. Ballif, B. C., Kashork, C. D., and Shaffer, L. G. (2000) The promise and pitfalls of telomere region-specific probes. Am J Hum Genet 67, 1356–9.

    PubMed  CAS  Google Scholar 

  8. Knight, S. J., Lese, C. M., Precht, K. S., Kuc, J., Ning, Y., Lucas, S., Regan, R., Brenan, M., Nicod, A., Lawrie, N. M., Cardy, D. L., Nguyen, H., Hudson, T. J., Riethman, H. C., Ledbetter, D. H., and Flint, J. (2000) An optimized set of human telomere clones for studying telomere integrity and architecture. Am J Hum Genet 67, 320–32.

    Article  PubMed  CAS  Google Scholar 

  9. Adeyinka, A., Adams, S. A., Lorentz, C. P., Van Dyke, D. L., and Jalal, S. M. (2005) Subtelomere deletions and translocations are frequently familial. Am J Med Genet A 135, 28–35.

    PubMed  Google Scholar 

  10. Barber, J. C. (2005) Directly transmitted unbalanced chromosome abnormalities and euchromatic variants. J Med Genet 42, 609–29.

    Article  PubMed  CAS  Google Scholar 

  11. Ravnan, J. B., Tepperberg, J. H., Papenhausen, P., Lamb, A. N., Hedrick, J., Eash, D., Ledbetter, D. H., and Martin, C. L. (2006) Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J Med Genet 43, 478–89.

    Article  PubMed  CAS  Google Scholar 

  12. Biesecker, L. G. (2002) The end of the beginning of chromosome ends. Am J Med Genet 107, 263–6.

    Article  PubMed  Google Scholar 

  13. Shao, L., Shaw, C. A., Lu, X. Y., Sahoo, T., Bacino, C. A., Lalani, S. R., Stankiewicz, P., Yatsenko, S. A., Li, Y., Neill, S., Pursley, A. N., Chinault, A. C., Patel, A., Beaudet, A. L., Lupski, J. R., and Cheung, S. W. (2008) Identification of chromosome abnormalities in subtelomeric regions by microarray analysis: a study of 5,380 cases. Am J Med Genet A 146A, 2242–51.

    Article  PubMed  Google Scholar 

  14. Willatt, L., Cox, J., Barber, J., Cabanas, E. D., Collins, A., Donnai, D., FitzPatrick, D. R., Maher, E., Martin, H., Parnau, J., Pindar, L., Ramsay, J., Shaw-Smith, C., Sistermans, E. A., Tettenborn, M., Trump, D., de Vries, B. B., Walker, K., and Raymond, F. L. (2005) 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am J Hum Genet 77, 154–60.

    Article  PubMed  CAS  Google Scholar 

  15. Lisi, E. C., Hamosh, A., Doheny, K. F., Squibb, E., Jackson, B., Galczynski, R., Thomas, G. H., and Batista, D. A. (2008) 3q29 interstitial microduplication: a new syndrome in a three-generation family. Am J Med Genet A 146A, 601–9.

    Article  PubMed  Google Scholar 

  16. Harada, N., Visser, R., Dawson, A., Fukamachi, M., Iwakoshi, M., Okamoto, N., Kishino, T., Niikawa, N., and Matsumoto, N. (2004) A 1-Mb critical region in six patients with 9q34.3 terminal deletion syndrome. J Hum Genet 49, 440–4.

    Article  PubMed  CAS  Google Scholar 

  17. Stewart, D. R., Huang, A., Faravelli, F., Anderlid, B. M., Medne, L., Ciprero, K., Kaur, M., Rossi, E., Tenconi, R., Nordenskjold, M., Gripp, K. W., Nicholson, L., Meschino, W. S., Capua, E., Quarrell, O. W., Flint, J., Irons, M., Giampietro, P. F., Schowalter, D. B., Zaleski, C. A., Malacarne, M., Zackai, E. H., Spinner, N. B., and Krantz, I. D. (2004) Subtelomeric deletions of chromosome 9q: a novel microdeletion syndrome. Am J Med Genet A 128A, 340–51.

    Article  PubMed  Google Scholar 

  18. Kleefstra, T., Brunner, H. G., Amiel, J., Oudakker, A. R., Nillesen, W. M., Magee, A., Genevieve, D., Cormier-Daire, V., van Esch, H., Fryns, J. P., Hamel, B. C., Sistermans, E. A., de Vries, B. B., and van Bokhoven, H. (2006) Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet 79, 370–7.

    Article  PubMed  CAS  Google Scholar 

  19. Phelan, M. C., Rogers, R. C., Saul, R. A., Stapleton, G. A., Sweet, K., McDermid, H., Shaw, S. R., Claytor, J., Willis, J., and Kelly, D. P. (2001) 22q13 deletion syndrome. Am J Med Genet 101, 91–9.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson, H. L., Wong, A. C., Shaw, S. R., Tse, W. Y., Stapleton, G. A., Phelan, M. C., Hu, S., Marshall, J., and McDermid, H. E. (2003) Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 40, 575–84.

    Article  PubMed  CAS  Google Scholar 

  21. Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., Nygren, G., Rastam, M., Gillberg, I. C., Anckarsater, H., Sponheim, E., Goubran-Botros, H., Delorme, R., Chabane, N., Mouren-Simeoni, M. C., de Mas, P., Bieth, E., Roge, B., Heron, D., Burglen, L., Gillberg, C., Leboyer, M., and Bourgeron, T. (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39, 25–7.

    Article  PubMed  CAS  Google Scholar 

  22. National Institutes of Health and Institute of Molecular Medicine Collaboration (1996) A complete set of human telomeric probes and their clinical application. Nat Genet 14, 86–9.

    Google Scholar 

  23. Knight, S. J., Horsley, S. W., Regan, R., Lawrie, N. M., Maher, E. J., Cardy, D. L., Flint, J., and Kearney, L. (1997) Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet 5, 1–8.

    PubMed  CAS  Google Scholar 

  24. Knight, S. J., Regan, R., Nicod, A., Horsley, S. W., Kearney, L., Homfray, T., Winter, R. M., Bolton, P., and Flint, J. (1999) Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet 354, 1676–81.

    Article  PubMed  CAS  Google Scholar 

  25. Baldwin, E. L., Lee, J. Y., Blake, D. M., Bunke, B. P., Alexander, C. R., Kogan, A. L., Ledbetter, D. H., and Martin, C. L. (2008) Enhanced detection of clinically relevant genomic imbalances using a targeted plus whole genome oligonucleotide microarray. Genet Med 10, 415–29.

    Article  PubMed  CAS  Google Scholar 

  26. Gajecka, M., Pavlicek, A., Glotzbach, C. D., Ballif, B. C., Jarmuz, M., Jurka, J., and Shaffer, L. G. (2006) Identification of sequence motifs at the breakpoint junctions in three t(1;9)(p36.3;q34) and delineation of mechanisms involved in generating balanced translocations. Hum Genet 120, 519–26.

    Article  PubMed  CAS  Google Scholar 

  27. Gajecka, M., Gentles, A. J., Tsai, A., Chitayat, D., Mackay, K. L., Glotzbach, C. D., Lieber, M. R., and Shaffer, L. G. (2008) Unexpected complexity at breakpoint junctions in phenotypically normal individuals and mechanisms involved in generating balanced translocations t(1;22)(p36;q13). Genome Res 18, 1733–42.

    Article  PubMed  CAS  Google Scholar 

  28. Yatsenko, S. A., Brundage, E. K., Roney, E. K., Cheung, S. W., Chinault, A. C., and Lupski, J. R. (2009) Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome. Hum Mol Genet 18, 1924–36.

    Article  PubMed  CAS  Google Scholar 

  29. Monfouilloux, S., Avet-Loiseau, H., Amarger, V., Balazs, I., Pourcel, C., and Vergnaud, G. (1998) Recent human-specific spreading of a subtelomeric domain. Genomics 51, 165–76.

    Article  PubMed  CAS  Google Scholar 

  30. Martin, C. L., Wong, A., Gross, A., Chung, J., Fantes, J. A., and Ledbetter, D. H. (2002) The evolutionary origin of human subtelomeric homologies – or where the ends begin. Am J Hum Genet 70, 972–84.

    Article  PubMed  CAS  Google Scholar 

  31. Rudd, M. K., Friedman, C., Parghi, S. S., Linardopoulou, E. V., Hsu, L., and Trask, B. J. (2007) Elevated rates of sister chromatid exchange at chromosome ends. PLoS Genet 3, e32.

    Article  PubMed  Google Scholar 

  32. Rudd, M. K., Endicott, R. M., Friedman, C., Walker, M., Young, J. M., Osoegawa, K., de Jong, P. J., Green, E. D., and Trask, B. J. (2009) Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event. Genome Res 19, 33–41.

    Article  PubMed  CAS  Google Scholar 

  33. Itsara, A., Cooper, G. M., Baker, C., Girirajan, S., Li, J., Absher, D., Krauss, R. M., Myers, R. M., Ridker, P. M., Chasman, D. I., Mefford, H., Ying, P., Nickerson, D. A., and Eichler, E. E. (2009) Population analysis of large copy number variants and hotspots of human genetic disease. Am J Hum Genet 84, 148–61.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, K., Chen, Z., Tadesse, M. G., Glessner, J., Grant, S. F., Hakonarson, H., Bucan, M., and Li, M. (2008) Modeling genetic inheritance of copy number variations. Nucleic Acids Res 36, e138.

    Article  PubMed  Google Scholar 

  35. Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F., Hakonarson, H., and Bucan, M. (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17, 1665–74.

    Article  PubMed  CAS  Google Scholar 

  36. Baptista, J., Mercer, C., Prigmore, E., Gribble, S. M., Carter, N. P., Maloney, V., Thomas, N. S., Jacobs, P. A., and Crolla, J. A. (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82, 927–36.

    Article  PubMed  CAS  Google Scholar 

  37. McClintock, B. (1941) The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics 26, 234–82.

    PubMed  CAS  Google Scholar 

  38. Ballif, B. C., Yu, W., Shaw, C. A., Kashork, C. D., and Shaffer, L. G. (2003) Monosomy 1p36 breakpoint junctions suggest pre-meiotic breakage-fusion-bridge cycles are involved in generating terminal deletions. Hum Mol Genet 12, 2153–65.

    Article  PubMed  CAS  Google Scholar 

  39. Stetten, G., Charity, L. L., Kasch, L. M., Scott, A. F., Berman, C. L., Pressman, E., and Blakemore, K. J. (1997) A paternally derived inverted duplication of 7q with evidence of a telomeric deletion. Am J Med Genet 68, 76–81.

    Article  PubMed  CAS  Google Scholar 

  40. Jenderny, J., Poetsch, M., Hoeltzenbein, M., Friedrich, U., and Jauch, A. (1998) Detection of a concomitant distal deletion in an inverted duplication of chromosome 3. Is there an overall mechanism for the origin of such duplications/deficiencies? Eur J Hum Genet 6, 439–44.

    Article  PubMed  CAS  Google Scholar 

  41. Bonaglia, M. C., Giorda, R., Poggi, G., Raggi, M. E., Rossi, E., Baroncini, A., Giglio, S., Borgatti, R., and Zuffardi, O. (2000) Inverted duplications are recurrent rearrangements always associated with a distal deletion: description of a new case involving 2q. Eur J Hum Genet 8, 597–603.

    Article  PubMed  CAS  Google Scholar 

  42. Cotter, P. D., Kaffe, S., Li, L., Gershin, I. F., and Hirschhorn, K. (2001) Loss of subtelomeric sequence associated with a terminal inversion duplication of the short arm of chromosome 4. Am J Med Genet 102, 76–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Karen E. Hermetz for providing array images and Cheryl T. Strauss for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Katharine Rudd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rudd, M.K. (2012). Structural Variation in Subtelomeres. In: Feuk, L. (eds) Genomic Structural Variants. Methods in Molecular Biology, vol 838. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-507-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-507-7_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-506-0

  • Online ISBN: 978-1-61779-507-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics