Skip to main content

Activity-Based Protein Profiling of Infected Plants

  • Protocol
  • First Online:
Plant Fungal Pathogens

Part of the book series: Methods in Molecular Biology ((MIMB,volume 835))

Abstract

Activity-based protein profiling (ABPP) is a powerful analytical method to detect and compare the activity of proteins in proteomes. This is achieved using specific activity-based probes that are often derived from inhibitors and are linked to reporter groups like rhodamine or biotin for fluorescence detection and/or affinity purification, respectively. The probes react with the active site residue of proteins and become covalently and irreversibly attached, facilitating the separation, detection and identification of the labelled proteins. In this protocol we describe all the steps required for labelling, purification and identification of labelled proteins from gels and show how activities in two proteomes can be compared. The identification of serine hydrolases from Arabidopsis plants infected with Botrytis cinerea using the trifunctional probe TriFP is used as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kolodziejek, I., and Van der Hoorn, R. A. L. Mining the active proteome in plant science and biotechnology. Curr Opin Biotechnol 21, 225–33.

    Google Scholar 

  2. Simon, G. M., and Cravatt, B. F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J Biol Chem 285, 11051–5.

    Google Scholar 

  3. Puri, A. W., and Bogyo, M. (2009) Using small molecules to dissect mechanisms of microbial pathogenesis. ACS Chem Biol 4, 603–16.

    Article  PubMed  CAS  Google Scholar 

  4. Van der Hoorn, R. A. L., Leeuwenburgh, M. A., Bogyo, M., Joosten, M. H. A., and Peck, S. C. (2004) Activity profiling of papain-like cysteine proteases in plants. Plant Physiol 135, 1170–8.

    Article  PubMed  Google Scholar 

  5. Song, J., Win, J., Tian, M., Schornack, S., Kaschani, F., Ilyas, M., Van der Hoorn, R. A. L., and Kamoun, S. (2009) Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci USA 106, 1654–9.

    Article  PubMed  CAS  Google Scholar 

  6. Shabab, M., Shindo, T., Gu, C., Kaschani, F., Pansuriya, T., Chintha, R., Harzen, A., Colby, T., Kamoun, S., and Van der Hoorn, R. A. L. (2008) Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell 20, 1169–83.

    Article  PubMed  CAS  Google Scholar 

  7. Kaschani, F., Gu, C., Niessen, S., Hoover, H., Cravatt, B. F., and Van der Hoorn, R. A. L. (2009) Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana. Mol Cell Proteomics 8, 1082–93.

    Article  PubMed  CAS  Google Scholar 

  8. Gu, C., Kolodziejek, I., Misas-Villamil, J., Shindo, T., Colby, T., Verdoes, M., Richau, K. H., Schmidt, J., Overkleeft, H. S., and Van der Hoorn, R. A. L. (2010) Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. Plant J 62, 160–70.

    Article  PubMed  CAS  Google Scholar 

  9. Kidd, D., Liu, Y., and Cravatt, B. F. (2001) Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005–15.

    Article  PubMed  CAS  Google Scholar 

  10. Liu, Y., Patricelli, M. P., and Cravatt, B. F. (1999) Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci USA 96, 14694–9.

    Article  PubMed  CAS  Google Scholar 

  11. White, K., Bruckner, J. V., and Guess, W. L. (1973) Toxicological studies of 2-mercaptoethanol. J Pharm Sci 62, 237–41.

    Article  PubMed  CAS  Google Scholar 

  12. Zikolov, P., and Budevsky, O. (1973) Acid-base equilibria in ethylene glycol--I: definition of pH and determination of pk-values of acid-base indicators. Talanta 20, 487–93.

    Article  PubMed  CAS  Google Scholar 

  13. Calleman, C. J., Wu, Y., He, F., Tian, G., Bergmark, E., Zhang, S., Deng, H., Wang, Y., Crofton, K. M., Fennell, T., and et al. (1994) Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicol Appl Pharmacol 126, 361–71.

    Article  PubMed  CAS  Google Scholar 

  14. Friedman, M. A., Dulak, L. H., and Stedham, M. A. (1995) A lifetime oncogenicity study in rats with acrylamide. Fundam Appl Toxicol 27, 95–105.

    Article  PubMed  CAS  Google Scholar 

  15. Gavina, J. M. A., and Britz-McKibbin, P. (2007) Protein Unfolding and Conformational Studies by Capillary Electrophoresis. Curr. Anal. Chem. 3, 17–31.

    Article  CAS  Google Scholar 

  16. Galvani, M., Hamdan, M., Herbert, B., and Righetti, P. G. (2001) Alkylation kinetics of proteins in preparation for two-dimensional maps: a matrix assisted laser desorption/ionization-mass spectrometry investigation. Electrophoresis 22, 2058–65.

    Article  PubMed  CAS  Google Scholar 

  17. Andrews, P. C., and Dixon, J. E. (1987) A procedure for in situ alkylation of cystine residues on glass fiber prior to protein microsequence analysis. Anal Biochem 161, 524–8.

    Article  PubMed  CAS  Google Scholar 

  18. Herbert, B., Galvani, M., Hamdan, M., Olivieri, E., MacCarthy, J., Pedersen, S., and Righetti, P. G. (2001) Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how? Electrophoresis 22, 2046–57.

    Article  PubMed  CAS  Google Scholar 

  19. Smillie, L. B., and Neurath, H. (1959) Reversible inactivation of trypsin by anhydrous formic acid. J Biol Chem 234, 355–9.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max Planck Society and the Deutsche Forschungsgemeinschaft projects HO3983/3-1,2 and HO3983/4-1

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renier A. L. van der Hoorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kaschani, F., Gu, C., van der Hoorn, R.A.L. (2012). Activity-Based Protein Profiling of Infected Plants. In: Bolton, M., Thomma, B. (eds) Plant Fungal Pathogens. Methods in Molecular Biology, vol 835. Humana Press. https://doi.org/10.1007/978-1-61779-501-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-501-5_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-500-8

  • Online ISBN: 978-1-61779-501-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics