Skip to main content

Shedding of Cell Membrane-Bound Proteoglycans

  • Protocol
  • First Online:
Proteoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 836))

Abstract

Membrane-bound proteoglycans function primarily as coreceptors for many glycosaminoglycan (GAG)-binding ligands at the cell surface. The majority of membrane-bound proteoglycans can also function as soluble autocrine or paracrine effectors as their extracellular domains, replete with all GAG chains, are enzymatically cleaved and released from the cell surface by ectodomain shedding. In particular, the ectodomain shedding of syndecans, a major family of cell surface heparan sulfate proteoglycans, is an important posttranslational mechanism that modulates diverse pathophysiological processes. Syndecan shedding is a tightly controlled process that regulates the onset, progression, and resolution of various infectious and noninfectious inflammatory diseases. This review describes methods to induce and measure the shedding of cell membrane-bound proteoglycans, focusing on syndecan shedding as a prototypic example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernfield, M., Götte, M., Park, P. W., Reizes, O., Fitzgerald, M. L., Lincecum, J., and Zako, M. (1999) Functions of cell surface heparan sulfate proteoglycans, Annu. Rev. Biochem. 68, 729–777.

    Article  PubMed  CAS  Google Scholar 

  2. Couchman, J. R. (2010) Transmembrane Signaling Proteoglycans, Annu Rev Cell Dev Biol., 26, 89–114.

    Article  PubMed  CAS  Google Scholar 

  3. Park, P. W., Reizes, O., and Bernfield, M. (2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters, J. Biol. Chem. 275, 29923–29926.

    Article  PubMed  CAS  Google Scholar 

  4. Hayashida, K., Bartlett, A. H., Chen, Y., and Park, P. W. (2010) Molecular and cellular mechanisms of ectodomain shedding, Anat. Rec. 293, 925–937.

    Article  CAS  Google Scholar 

  5. Steppan, J., Hofer, S., Funke, B., Brenner, T., Henrich, M., Martin, E., et al. (2011) Sepsis and Major Abdominal Surgery Lead to Flaking of the Endothelial Glycocalix, J Surg Res, 165, 136–141.

    Article  PubMed  Google Scholar 

  6. Nelson, A., Berkestedt, I., Schmidtchen, A., Ljunggren, L., and Bodelsson, M. (2008) Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma, Shock 30, 623–627.

    Article  PubMed  CAS  Google Scholar 

  7. Rehm, M., Bruegger, D., Christ, F., Conzen, P., Thiel, M., Jacob, M., et al. (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia, Circulation 116, 1896–1906.

    Article  PubMed  CAS  Google Scholar 

  8. Seidel, C., Ringdén, O., and Remberger, M. (2003) Increased levels of syndecan-1 in serum during acute graft-versus-host disease, Transplantation 76, 423–426.

    Article  PubMed  Google Scholar 

  9. Joensuu, H., Anttonen, A., Eriksson, M., Makitaro, R., Alfthan, H., Kinnula, V., and Leppa, S. (2002) Soluble syndecan-1 and serum basic fibroblast growth factor are new prognostic factors in lung cancer, Cancer Res. 62, 5210–5217.

    PubMed  CAS  Google Scholar 

  10. Yang, Y., Yaccoby, S., Liu, W., Langford, J. K., Pumphrey, C. Y., Theus, A., et al. (2002) Soluble syndecan-1 promotes growth of myeloma tumors in vivo, Blood 100, 610–617.

    Article  PubMed  CAS  Google Scholar 

  11. Kainulainen, V., Wang, H., Schick, C., and Bernfield, M. (1998) Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids, J. Biol. Chem. 273, 11563–11569.

    Article  PubMed  CAS  Google Scholar 

  12. Kliment, C. R., Englert, J. M., Gochuico, B. R., Yu, G., Kaminski, N., Rosas, I., and Oury, T. D. (2009) Oxidative stress alters syndecan-1 distribution in lungs with pulmonary fibrosis, J Biol Chem 284, 3537–3545.

    Article  PubMed  CAS  Google Scholar 

  13. Kato, M., Wang, H., Kainulainen, V., Fitzgerald, M. L., Ledbetter, S., Ornitz, D. M., and Bernfield, M. (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2, Nat. Med. 4, 691–697.

    Article  PubMed  CAS  Google Scholar 

  14. Li, Q., Park, P. W., Wilson, C. L., and Parks, W. C. (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury, Cell 111, 635–646.

    Article  PubMed  CAS  Google Scholar 

  15. Xu, J., Park, P. W., Kheradmand, F., and Corry, D. B. (2005) Endogenous attenuation of allergic lung inflammation by syndecan-1, J. Immunol. 174, 5758–5765.

    PubMed  CAS  Google Scholar 

  16. Park, P. W., Pier, G. B., Hinkes, M. T., and Bernfield, M. (2001) Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence, Nature 411, 98–102.

    Article  PubMed  CAS  Google Scholar 

  17. Hayashida, A., Bartlett, A. H., Foster, T. J., and Park, P. W. (2009) Staphylococcus aureus beta-toxin induces acute lung injury through syndecan-1, Am. J. Pathol. 174, 509–518.

    Article  PubMed  CAS  Google Scholar 

  18. Hayashida, K., Parks, W. C., and Park, P. W. (2009) Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines, Blood 114, 3033–3043.

    Article  PubMed  CAS  Google Scholar 

  19. Hayashida, K., Chen, Y., Bartlett, A. H., and Park, P. W. (2008) Syndecan-1 is an in vivo suppressor of Gram-positive toxic shock, J. Biol. Chem. 283, 19895–19903.

    Article  PubMed  CAS  Google Scholar 

  20. Katoh, S., Taniguchi, H., Matsubara, Y., Matsumoto, N., Fukushima, K., Kadota, J., et al. (1999) Overexpression of CD44 on alveolar eosinophils with high concentrations of soluble CD44 in bronchoalveolar lavage fluid in patients with eosinophilic pneumonia, Allergy 54, 1286–1292.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, Q., Teder, P., Judd, N. P., Noble, P. W., and Doerschuk, C. M. (2002) CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice, Am. J. Pathol. 161, 2219–2228.

    Article  PubMed  CAS  Google Scholar 

  22. Kim, C. W., Goldberger, O. A., Gallo, R. L., and Bernfield, M. (1994) Members of the syndecan family of heparan sulfate proteoglycans are expressed in distinct cell-, tissue-, and development-specific patterns, Mol. Biol. Cell 5, 797–805.

    PubMed  CAS  Google Scholar 

  23. Chen, Y., Bennett, A., Hayashida, A., Hollingshead, S., and Park, P. W. (2007) Streptococcus pneumoniae sheds syndecan-1 ectodomains via ZmpC, a metalloproteinase virulence factor, J. Biol. Chem. 282, 159–167.

    Article  PubMed  CAS  Google Scholar 

  24. Fitzgerald, M. L., Wang, Z., Park, P. W., Murphy, G., and Bernfield, M. (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3 sensitive metalloproteinase, J. Cell Biol. 148, 811–824.

    Article  PubMed  CAS  Google Scholar 

  25. Hayashida, K., Stahl, P. D., and Park, P. W. (2008) Syndecan-1 ectodomain shedding is regulated by the small GTPase Rab5, J. Biol. Chem. 283, 35435–35444.

    Article  PubMed  CAS  Google Scholar 

  26. Park, P. W., Foster, T. J., Nishi, E., Duncan, S. J., Klagsbrun, M., and Chen, Y. (2004) Activation of syndecan-1 ectodomain shedding by Staphylococcus aureus alpha-toxin and beta-toxin, J. Biol. Chem. 279, 251–258.

    Article  PubMed  CAS  Google Scholar 

  27. Park, P. W., Pier, G. B., Preston, M. J., Goldberger, O., Fitzgerald, M. L., and Bernfield, M. (2000) Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa, J. Biol. Chem. 275, 3057–3064.

    Article  PubMed  CAS  Google Scholar 

  28. Popova, T. G., Millis, B., Bradburne, C., Nazarenko, S., Bailey, C., Chandhoke, V., and Popov, S. G. (2006) Acceleration of epithelial cell syndecan-1 shedding by anthrax hemolytic virulence factors, BMC Microbiol. 6, 8–24.

    Article  PubMed  Google Scholar 

  29. Subramanian, S. V., Fitzgerald, M. L., and Bernfield, M. (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor activation, J. Biol. Chem. 272, 14713-14720.

    Article  PubMed  CAS  Google Scholar 

  30. Yang, Y., Macleod, V., Miao, H. Q., Theus, A., Zhan, F., Shaughnessy, J. D. Jr., et al. (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis, J. Biol. Chem. 282, 13326–13333.

    Article  PubMed  CAS  Google Scholar 

  31. Hayashida, K., Johnston, D. R., Goldberger, O., and Park, P. W. (2006) Syndecan-1 expression in epithelial cells is induced by TGF-beta through a PKA-dependent pathway, J. Biol. Chem. 281, 24365–24374.

    Article  PubMed  CAS  Google Scholar 

  32. Ding, K., Lopez-Burks, M., Sanchez-Duran, J. A., Korc, M., and Lander, A. D. (2005) Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells, J. Cell Biol. 171, 729–738.

    Article  PubMed  CAS  Google Scholar 

  33. Reizes, O., Goldberger, O., Smith, A. C., Xu, Z., Bernfield, M., and Bickel, P. E. (2006) Insulin promotes shedding of syndecan ectodomains from 3T3-L1 adipocytes: a proposed mechanism for stabilization of extracellular lipoprotein lipase, Biochemistry 45, 5703–5711.

    Article  PubMed  CAS  Google Scholar 

  34. Day, R. M., Mitchell, T. J., Knight, S. C., and Forbes, A. (2003) Regulation of epithelial syndecan-1 expression by inflammatory cytokines, Cytokine 21, 224–233.

    Article  PubMed  CAS  Google Scholar 

  35. Henry-Stanley, M. J., Zhang, B., Erlandsen, S. L., and Wells, C. L. (2006) Synergistic effect of tumor necrosis factor-alpha and interferon-gamma on enterocyte shedding of syndecan-1 and associated decreases in internalization of Listeria monocytogenes and Staphylococcus aureus, Cytokine 34, 252–259.

    Article  PubMed  CAS  Google Scholar 

  36. Charnaux, N., Brule, S., Chaigneau, T., Saffar, L., Sutton, A., Hamon, M., et al. (2005) RANTES (CCL5) induces a CCR5-dependent accelerated shedding of syndecan-1 (CD138) and syndecan-4 from HeLa cells and forms complexes with the shed ectodomains of these proteoglycans as well as with those of CD44, Glycobiology 15, 119–130.

    Article  PubMed  CAS  Google Scholar 

  37. Brule, S., Charnaux, N., Sutton, A., Ledoux, D., Chaigneau, T., Saffar, L., and Gattegno, L. (2006) The shedding of syndecan-4 and syndecan-1 from HeLa cells and human primary macrophages is accelerated by SDF-1/CXCL12 and mediated by the matrix metalloproteinase-9, Glycobiology 16, 488–501.

    Article  PubMed  CAS  Google Scholar 

  38. Endo, K., Takino, T., Miyamori, H., Kinsen, H., Yoshizaki, T., Furukawa, M., and Sato, H. (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration, J. Biol. Chem. 278, 40764–40770.

    Article  PubMed  CAS  Google Scholar 

  39. Pruessmeyer, J., Martin, C., Hess, F. M., Schwarz, N., Schmidt, S., Kogel, T., et al. (2010) A disintegrin and metalloproteinase 17 (ADAM17) mediates inflammation-induced shedding of syndecan-1 and -4 by lung epithelial cells, J Biol Chem 285, 555–564.

    Article  PubMed  CAS  Google Scholar 

  40. Chung, M. C., Popova, T. G., Millis, B. A., Mukherjee, D. V., Zhou, W., Liotta, L. A., et al. (2006) Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors, J. Biol. Chem. 281, 31408–31418.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank past and present members of the Park laboratory for developing essential reagents and constantly improving the described procedures. This work was supported by NIH grants R01 HL094613 and R01 HL107472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyong Woo Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nam, E.J., Park, P.W. (2012). Shedding of Cell Membrane-Bound Proteoglycans. In: Rédini, F. (eds) Proteoglycans. Methods in Molecular Biology, vol 836. Humana Press. https://doi.org/10.1007/978-1-61779-498-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-498-8_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-497-1

  • Online ISBN: 978-1-61779-498-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics