Skip to main content

Models for Studies of Proteoglycans in Kidney Pathophysiology

  • Protocol
  • First Online:
Proteoglycans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 836))

Abstract

Proteoglycans (PGs) impact many aspects of kidney health and disease. Models that permit genetic dissection of PG core protein and glycosaminoglycan (GAG) function have been instrumental to understanding their roles in the kidney. Matrix-associated PGs do not serve critical structural roles in the organ, nor do they contribute significantly to the glomerular barrier under normal conditions, but their abnormal expression influences fibrosis, inflammation, and progression of kidney disease. Most core proteins are dispensable for nephrogenesis (glypican-3 being an exception) and for maintenance of function in adult life, but their loss alters susceptibility to experimental kidney injury. In contrast, kidney development is exquisitely sensitive to GAG expression and fine structure as evidenced by the severe phenotypes of mutants for genes involved in GAG biosynthesis. This article reviews PG expression in normal kidney and the abnormalities caused by their disruption in mice and man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raats, C. J., van den Born, J., and Berden, J. H. (2000) Glomerular heparan sulfate alterations: mechanisms and relevance for proteinuria. Kidney Int. 57, 385–400.

    Article  PubMed  CAS  Google Scholar 

  2. Little, M., Georgas, K., Pennisi, D., and Wilkinson, L. (2010) Kidney development: two tales of tubulogenesis. Curr Top Dev Biol. 90, 193–229.

    Article  PubMed  CAS  Google Scholar 

  3. Steer, D. L., Shah, M. M., Bush, K. T., Stuart, R. O., Sampogna, R. V., Meyer, T. N., et al (2004) Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney. Dev Biol. 272, 310–327.

    Article  PubMed  CAS  Google Scholar 

  4. Machuca, E., Benoit, G., and Antignac, C. (2009) Genetics of nephrotic syndrome: connecting molecular genetics to podocyte physiology. Hum Mol Genet. 18, R185–194.

    Article  PubMed  CAS  Google Scholar 

  5. Kanwar, Y. S., Linker, A., and Farquhar, M. G. (1980) Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol. 86, 688–693.

    Article  PubMed  CAS  Google Scholar 

  6. Iozzo, R. V. (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol. 6, 646–6956.

    Article  PubMed  CAS  Google Scholar 

  7. Bezakova, G. and Ruegg, M. A. (2003) New insights into the roles of agrin. Nat Rev Mol Cell Biol. 4, 295–308.

    Article  PubMed  CAS  Google Scholar 

  8. Burgess, R. W., Skarnes, W. C., and Sanes, J. R. (2000) Agrin isoforms with distinct amino termini: Differential expression, localization, and function. J Cell Biol. 151, 41–52.

    Article  PubMed  CAS  Google Scholar 

  9. Raats, C. J., Bakker, M. A., Hoch, W., Tamboer, W. P., Groffen, A. J., van den Heuvel, L. P., et al (1998) Differential expression of agrin in renal basement membranes as revealed by domain-specific antibodies. J Biol Chem. 273, 17832–17838.

    Article  PubMed  CAS  Google Scholar 

  10. Reif, R., Sales, S., Hettwer, S., Dreier, B., Gisler, C., Wölfel, J., et al (2007) Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation. FASEB J. 21, 3468–3478.

    Article  PubMed  CAS  Google Scholar 

  11. Groffen, A. J., Ruegg, M. A., Dijkman, H., van de Velden, T. J., Buskens, C. A., van den Born, J., et al (1998) Agrin is a major heparan sulfate proteoglycan in the human glomerular basement membrane. J Histochem Cytochem. 46, 19–27.

    Article  PubMed  CAS  Google Scholar 

  12. Lin, W., Burgess, R. W., Dominguez, B., Pfaff, S. L., Sanes, J. R., and Lee, K. F. (2001) Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057–1064.

    Article  PubMed  CAS  Google Scholar 

  13. Harvey, S. J., Jarad, G., Cunningham, J., Rops, A. L., van der Vlag, J., Berden, J. H., et al (2007) Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol. 171, 139–152.

    Article  PubMed  CAS  Google Scholar 

  14. Yard, B. A., Kahlert, S., Engelleiter, R., Resch, S., Waldherr, R., Groffen, A. J., et al (2001) Decreased glomerular expression of agrin in diabetic nephropathy and podocytes, cultured in high glucose medium. Exp Nephrol. 9, 214–222.

    Article  PubMed  CAS  Google Scholar 

  15. van den Hoven, M. J., Rops, A. L., Bakker, M., Aten, J., Rutjes, N., Roestenberg, P., et al (2006) Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 70, 2100–2108.

    PubMed  Google Scholar 

  16. Wijnhoven, T. J., van den Hoven, M. J., Ding, H., van Kuppevelt, T. H., van der Vlag, J., Berden, J. H., et al (2008) Heparanase induces a differential loss of heparan sulfate domains in overt diabetic nephropathy. Diabetologia 51, 372–382.

    Article  PubMed  CAS  Google Scholar 

  17. Joosten, S. A., Siipkens, Y. W., van Ham, V., Trouw, L. A., van der Vlag, J., van den Heuvel, B., et al (2005) Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy. Am J Transplant. 5, 383–393.

    Article  PubMed  CAS  Google Scholar 

  18. Groffen, A. J., Hop, F. W., Tryggvason, K., Dijkman, H., Assmann, K. J., Veerkamp, J. H., et al (1997) Evidence for the existence of multiple heparan sulfate proteoglycans in the human glomerular basement membrane and mesangial matrix. Eur J Biochem. 247, 175–182.

    Article  PubMed  CAS  Google Scholar 

  19. Groffen, A. J. A., Veerkamp, J. H., Monnens, L. A. H., and van den Heuvel, L. P. (1999) Recent insights into the structure and functions of heparan sulfate proteoglycans in the human glomerular basement membrane. Nephrol Dial Transplant. 14, 2119–2129.

    Article  PubMed  CAS  Google Scholar 

  20. Handler, M., Yurchenco, P. D., and Iozzo, R. V. (1997) Developmental expression of perlecan during murine embryogenesis. Dev Dyn. 210, 130–145.

    Article  PubMed  CAS  Google Scholar 

  21. Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J. R., and Yamada, Y. (1999) Perlecan is essential for cartilage and cephalic development. Nature Gen. 23, 354–358.

    Article  CAS  Google Scholar 

  22. Costell, M., Gustafsson, E., Aszodi, A., Mörgelin, M., Bloch, W., Hunziker, E., et al (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J Cell Biol. 147, 1109–1122.

    Article  PubMed  CAS  Google Scholar 

  23. Rossi, M., Morita, H., Sormunen, R., Airenne, S., Kreivi, M., Wang, L., et al (2003) Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245.

    Article  PubMed  CAS  Google Scholar 

  24. Zhou, Z., Wang, J., Cao, R., Morita, H., Soininen, R., Chan, K. M., et al (2004) Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64, 4699–4702.

    Article  PubMed  CAS  Google Scholar 

  25. Tran, P. K., Tran-Lundmark, K., Soininen, R., Tryggvason, K., Thyberg, J., and Hedin, U. (2004) Increased intimal hyperplasia and smooth muscle cell proliferation in transgenic mice with heparan sulfate-deficient perlecan. Circ Res. 94, 550–55.8

    Google Scholar 

  26. Morita, H., Yoshimura, A., Inui, K., Ideura, T., Watanabe, H., Wang, L., et al (2005) Heparan sulfate of perlecan is involved in glomerular filtration. J Am Soc Nephrol. 16, 17031710.

    Article  PubMed  CAS  Google Scholar 

  27. Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K., and Miner, J. H. (2009) Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant. 24, 2044–2051.

    Article  PubMed  CAS  Google Scholar 

  28. Conde-Knape, K. (2001) Heparan sulfate proteoglycans in experimental models of diabetes: a role for perlecan in diabetes complications. Diabetes Metab Res Rev. 17, 412–421.

    Article  PubMed  CAS  Google Scholar 

  29. Husain, M., D’Agati, V. D., He, J. C., Klotman, M. E., and Klotman, P. E. (2005) HIV-1 Nef induces dedifferentiation of podocytes in vivo: a characteristic feature of HIVAN. AIDS 19, 1975–1980.

    Article  PubMed  CAS  Google Scholar 

  30. Arora, S., Husain, M., Kumar, D., Patni, H., Pathak, S., Mehrotra, D., et al (2009) Human immunodeficiency virus downregulates podocyte apoE expression. Am J Physiol Renal Physiol. 297, F653-F661.

    Article  PubMed  CAS  Google Scholar 

  31. Halfter, W., Dong, S., Schurer, B., and Cole, G. J. (1998) Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem. 273, 25404–25412.

    Article  PubMed  CAS  Google Scholar 

  32. Dong, S., Cole, G. J., and Halfter, W. (2003) Expression of type XVIII collagen and localization of its glycosaminoglycan attachment sites. J Biol Chem. 278, 1700–1707.

    Article  PubMed  CAS  Google Scholar 

  33. Saarela, J., Rehn, M., Oikarinen, A., Autio-Harmainen, H., and Pihlajaniemi, T. (1998) The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol. 153, 611–626.

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki, O. T., Sertie, A. L., Der Kaloustian, V.M., Kok, F., Carpenter, M., Murray, J., et al (2002) Molecular analysis of collagen XVIII reveals novel mutations, presence of a third isoform, and possible genetic heterogeneity in Knobloch syndrome. Am J Hum Genet. 71, 1320–1329.

    Article  PubMed  CAS  Google Scholar 

  35. Miosge, N., Simniok, T., Sprysch, P., and Herken, R. (2003) The collagen type XVIII endostatin domain is co-localized with perlecan in basement membranes in vivo. J Histochem Cytochem. 51, 285–296.

    Article  PubMed  CAS  Google Scholar 

  36. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285.

    Article  PubMed  Google Scholar 

  37. Karumanchi, S. A., Jha, V., Ramachandran, R., Karihaloo, A., Tsiokas, L., Chan, B., et al (2001) Cell surface glypicans are low-affinity endostatin receptors. Mol Cell. 7, 811–822.

    Article  PubMed  CAS  Google Scholar 

  38. Karihaloo, A., Karumanchi, S. A., Barasch, J., Jha, V., Nickel, C. H., Yang, J., et al (2001) Endostatin regulates branching morphogenesis of renal epithelial cells and ureteric bud. Proc Natl Acad Sci USA 98, 1250912514.

    Article  PubMed  CAS  Google Scholar 

  39. Fukai, N., Eklund, L., Marneros, A. G., Oh, S. P, Keene, D. R., Tamarkin, L., et al (2002) Lack of collagen XVIII/endostatin results in eye abnormalities. EMBO J. 21, 1535–1544.

    Article  PubMed  CAS  Google Scholar 

  40. Utriainen, A., Sormunen, R., Kettunen, M., Carvalhaes, L. S., Sajanti, E., Eklund, L., et al (2004) Structurally altered basement membranes and hydrocephalus in a type XVIII collagen deficient mouse line. Hum Mol Genet. 13, 2089–2099.

    Article  PubMed  CAS  Google Scholar 

  41. Hamano, Y., Okude, T., Shirai, R., Sato, I., Kimura, R., Ogawa, M., et al (2010) Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis. J Am Soc Nephrol. 21, 1445–1455.

    Article  PubMed  CAS  Google Scholar 

  42. Ichinose, K., Maeshima, Y., Yamamoto, Y., Kitayama, H., Takazawa, Y., Hirokoshi, K., et al (2005) Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model. Diabetes 54, 2891–2903.

    Article  PubMed  CAS  Google Scholar 

  43. Kawashima, H., Watanabe, N., Hirose, M., Sun, X., Atarashi, K., Kimura, T., et al (2003) Collagen XVIII, a basement membrane heparan sulfate proteoglycan, interacts with L-selectin and monocyte chemoattractant protein-1. J Biol Chem. 278, 13069–13076.

    Article  PubMed  CAS  Google Scholar 

  44. Celie, J. W., Rutjes, N. W. P., Keuning, E. D., Soininen, R., Heljasvaara, R., Pihlajaniemi, T., et al (2007) Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. Am J Pathol. 170, 1865–1878.

    Article  PubMed  CAS  Google Scholar 

  45. Bellini, M. H., Coutinho, E. L., Filgueiras, T. C., Maciel, T. T., and Schor, N (2007) Endostatin expression in the murine model of ischaemia/reperfusion-induced acute renal failure. Nephrology (Carlton) 12, 459–465.

    Article  CAS  Google Scholar 

  46. Maciel, T. T., Coutinho, E. L., Soares, D., Achar, E., Schor, N., and Bellini, M. H. (2008) Endostatin, an antiangiogenic protein, is expressed in the unilateral ureteral obstruction mice model. J Nephrol. 21, 753–760.

    PubMed  CAS  Google Scholar 

  47. Cichy, M. C., Rocha, F. G., Tristão, V. R., Pessoa, E. A., Cenedeze, M. A., Nürmberg Junior, R., et al (2009) Collagen XVIII/endostatin expression in experimental endotoxemic acute renal failure. Braz J Med Biol Res. 42, 11501155.

    Article  PubMed  CAS  Google Scholar 

  48. Passos-Bueno, M. R., Suzuki, O. T., Armelin-Correa, L. M., Sertié, A. L., Errera, F. I., Bagatini, K., et al (2006) Mutations in collagen 18a1 (COL18A1) and their relevance to the human phenotype. Anais Acad Bras Cinècmias 78, 123–131.

    CAS  Google Scholar 

  49. Williams, T. A., Kirkby, G. R., Williams, F., and Ainsworth, J. R. (2008) A phenotypic variant of Knobloch syndrome. Ophthalmic Genet. 29, 85–86.

    Article  PubMed  Google Scholar 

  50. Czeizel, A. E., Göblyös, P., Kustos, G., Mester, E., and Paraicz, E. (1992) The second report of Knobloch syndrome. Am J Med Genet. 42, 777–779.

    Article  PubMed  CAS  Google Scholar 

  51. Xian, X., Gopal, S., and Couchman, J. R. (2010) Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res. 339, 31–46.

    Article  PubMed  CAS  Google Scholar 

  52. Cevikbas, F., Schaefer, L., Uhlig, P., Robenek, H., Theilmeier, G., Echtermeyer, F., et al (2008) Unilateral nephrectomy leads to up-regulation of syndecan-2 and TGF-beta-mediated glomerulosclerosis in syndecan-4 deficient male mice. Matrix Biol. 27, 42–52.

    Article  PubMed  CAS  Google Scholar 

  53. David, G., Bai, X. M., Van der Schueren, B., Marynen, P., Cassiman, J. J., and Van den Berghe, H. (1993) Spatial and temporal changes in the expression of fibroglycan (syndecan-2) during mouse embryonic development. Development 119, 841–854.

    PubMed  CAS  Google Scholar 

  54. Tsuzuki, S., Kojima, T., Katsumi, A., Yamazaki, T., Sugiura, I., and Saito, H. (1997) Molecular cloning, genomic organization, promoter activity, and tissue-specific expression of the mouse ryudocan gene. J Biochem. 122, 17–24.

    PubMed  CAS  Google Scholar 

  55. Ishiguro, K., Kadomatsu, K., Kojima, T., Muramatsu, H., Matsuo, S., Kusugami, K., et al (2001) Syndecan-4 deficiency increases susceptibility to k-carrageenan-induced renal damage. Lab Invest. 81, 509–516.

    Article  PubMed  CAS  Google Scholar 

  56. Rops, A. L., Götte, M., Baselmans, M. H., van den Hoven, M. J., Steenbergen, E. J., Lensen, J. F., et al (2007) Syndecan-1 deficiency aggravates anti-glomerular basement membrane nephritis. Kidney Int. 72, 1204–1215.

    Article  PubMed  CAS  Google Scholar 

  57. Rops, A. L., van den Hoven, M. J., Baselmans, M. M., Lensen, J. F., Wijnhoven, T. J., van den Heuvel, L. P., et al (2008) Heparan sulfate domains on cultured activated glomerular endothelial cells mediate leukocyte trafficking. Kidney Int. 73, 52–62.

    Article  PubMed  CAS  Google Scholar 

  58. Yung, S., Woods, A., Chan, T. M., Davies, M., Williams, J. D., and Couchman, J. R. (2010) Syndecan-4 up-regulation in proliferative renal disease is related to microfilament organization. FASEB J. 15, 1631–1633.

    Google Scholar 

  59. Filmus, J., Capurro, M., and Rast, J. (2009) Glypicans. Genome Biol. 9, 224.

    Article  CAS  Google Scholar 

  60. Litwack, E. D., Ivins, J. K., Kumbasar, A., Paine-Saunders, S., Stipp, C. S., and Lander, A. D. (1998) Expression of the heparan sulfate proteoglycan glypican-1 in the developing rodent. Dev Dyn. 211, 72–87.

    Article  PubMed  CAS  Google Scholar 

  61. Grisaru, S., Cano-Gauci, D., Tee, J., Filmus, J., and Rosenblum, N. D. (2001) Glypican-3 modulates BMP- and FGF-mediated effects during renal branching morphogenesis. Dev Biol. 231, 31–46.

    Article  PubMed  CAS  Google Scholar 

  62. Pellegrini, M., Pilia, G., Pantano, S., Lucchini, F., Uda, M., Fumi, M., et al (1998) Gpc3 expression correlates with the phenotype of the Simpson-Golabi-Behmel syndrome. Dev Dyn. 213, 431–439.

    Article  PubMed  CAS  Google Scholar 

  63. Watanabe, K., Yamada, H., and Yamaguchi, Y. (1995) K-glypican: a novel GPI-anchored heparan sulfate proteoglycan that is highly expressed in developing brain and kidney. J Cell Biol. 130, 1207–1218.

    Article  PubMed  CAS  Google Scholar 

  64. Saunders, S., Saunders, S. P., and Lander, A. D. (1997) Expression of the cell surface proteoglycan glypican-5 is developmentally regulated in kindey, limb and brain. Dev Biol. 190, 78–93.

    Article  PubMed  CAS  Google Scholar 

  65. Veugelers, M., De Cat, B., Ceulemans, H., Bruystens, A. M., Coomans, C., Dürr, J., et al (1999) Glypican-6, a new member of the glypican family of cell surface heparan sulfate proteoglycans. J Biol Chem. 274, 26968–26977.

    Article  PubMed  CAS  Google Scholar 

  66. Jen, Y. H., Musacchio, M., and Lander, A. D. (2009) Glypican-1 controls brain size through regulation of fibroblast growth factor signaling in early neurogenesis. Neural Dev. 4, 33.

    Article  PubMed  CAS  Google Scholar 

  67. Cano-Gauci, D. F., Song, H. H., Yang, H., McKerlie, C., Choo, B., Shi, W., et al (1999) Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J Cell Biol. 146, 255–264.

    PubMed  CAS  Google Scholar 

  68. Ng, A., Wong, M., Viviano, B., Erlich, J. M., Alba, G., Pflederer, C., et al (2009) Loss of glypican-3 function causes growth factor-dependent defects in cardiac and coronary vascular development. Dev Biol. 335, 208–215.

    Article  PubMed  CAS  Google Scholar 

  69. Hartwig, S., Hu, M. C., Cella, C., Piscione, T., Filmus, J., and Rosenblum, N. D. (2005) Glypican-3 modulates inhibitory Bmp2-Smad signaling to control renal development in vivo. Mech Dev. 122, 928–938.

    Article  PubMed  CAS  Google Scholar 

  70. Pilia, G., Hughes-Benzie, R. M., MacKenzie, A., Baybayan, P., Chen, E. Y., Huber, R., et al (1996) Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nat Genet. 12, 241–247.

    Article  PubMed  CAS  Google Scholar 

  71. Xiong, J., Wang, Y., Zhu, Z., Liu, J., Wang, Y., Zhang, C., et al (2007) NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production. Biochem Biophys Res Commun. 361, 960–967.

    Article  PubMed  CAS  Google Scholar 

  72. Amenta, P. S., Scivoletti, N. A., Newman, M. D., Sciancalepore, J. P., Li, D., and Myers, J. C. (2005) Proteoglycan-collagen XV in human tissues is seen linking banded collagen fibers subjacent to the basement membrane. J Histochem Cytochem. 53, 165–176.

    Article  PubMed  CAS  Google Scholar 

  73. Hägg, P. M., Hägg, P. O., Peltonen, S., Autio-Harmainen, H., and Pihlajaniemi, T. (1997) Location of type XV collagen in human tissues and its accumulation in the interstitial matrix of the fibrotic kidney. Am J Pathol. 150, 2075–2086.

    PubMed  Google Scholar 

  74. Muona, A., Eklund, L., Väisänen, T., and Pihlajaniemi, T. (2002) Developmentally regulated expression of type XV collagen correlates with abnormalities in Col15a1(–/–) mice. Matrix Biol. 21, 89–102.

    Article  PubMed  CAS  Google Scholar 

  75. Lauer, M., Scruggs, B., Chen, S., Wassenhove-McCarthy, D, and McCarthy, K. J. (2007) Leprecan distribution in the developing and adult kidney. Kidney Int. 72, 82–91.

    Article  PubMed  CAS  Google Scholar 

  76. Vranka, J. A., Pokidysheva, E., Hayashi, L., Zientek, K., Mizuno, K., Ishikawa, Y., et al (2010) Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem. 285, 17253–17262.

    Article  PubMed  CAS  Google Scholar 

  77. McCarthy, K. J., Accavitti, M. A., and Couchman, J. R. (1989) Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan. J Cell Biol. 109, 3187–3198.

    Article  PubMed  CAS  Google Scholar 

  78. McCarthy, K. J., Bynum, K., St John, P. L., Abrahamson, D. R., and Couchman, J. R. (1993) Basement membrane proteoglycans in glomerular morphogenesis: chondroitin sulfate proteoglycan is temporally and spatially restricted during development. J Histochem Cytochem. 41, 401–414.

    Article  PubMed  CAS  Google Scholar 

  79. Wu, R. R. and Couchman, J. R. (1997) cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: a five domain structure including coiled-coil motifs. J Cell Biol. 136, 433–444.

    Article  PubMed  CAS  Google Scholar 

  80. Ehara, T., Carone, F. A., McCarthy, K. J., and Couchman, J. R. (1994) Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease. Am J Pathol. 144, 612–621.

    PubMed  CAS  Google Scholar 

  81. McCarthy, K. J., Abrahamson, D. R., Bynum, K. R., St John, P. L., and Couchman, J. R. (1994) Basement membrane-specific chondroitin sulfate proteoglycan is abnormally associated with the glomerular capillary basement membrane of diabetic rats. J Histochem Cytochem. 42, 473–484.

    Article  PubMed  CAS  Google Scholar 

  82. Ghiselli, G., Siracusa, L. D., and Iozzo, R. V. (1999) Complete cDNA cloning, genomic organization, chromosomal assignment, functional characterization of the promoter, and expression of the murine Bamacan gene. J Biol Chem. 274, 17384–17393.

    Article  PubMed  CAS  Google Scholar 

  83. Schaefer, L. and Iozzo, R. V. (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem. 283, 21305–21309.

    Article  PubMed  CAS  Google Scholar 

  84. Stokes, M. B., Holler, S., Cui, Y., Hudkins, K. L., Eitner, F., Fogo, A., et al (2000) Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int. 57, 487–498.

    Article  PubMed  CAS  Google Scholar 

  85. Schaeffer, L., Grone, H.-J., Raslik, I., Robenek, H., Ugorcakova, J., Budny, S., et al (2000) Small proteoglycans of normal adult human kidney: Distinct expression patterns of decorin, biglycan, fibromodulin and lumican. Kidney Int. 58, 1557–1568.

    Article  Google Scholar 

  86. Schaefer, L., Mihalik, D., Babelova, A., Krzyzankova, M., Gröne, H. J., Iozzo, R. V., et al (2004) Regulation of fibrillin-1 by biglycan and decorin is important for tissue preservation in the kidney during pressure-induced injury. Am J Pathol. 165, 383–396.

    Article  PubMed  CAS  Google Scholar 

  87. Williams, K. J., Qiu, G., Usui, H. K., Dunn, S. R., McCue, P., Bottinger, E., et al (2007) Decorin deficiency enhances progressive nephropathy in diabetic mice. Am J Pathol. 171, 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  88. Merline, R., Lazaroski, S., Babelova, A., Tsalastra-Greul, W., Pfeilschifter, J., Schluter, K. D., et al (2009) Decorin deficiency in diabetic mice: aggravation of nephropathy due to overexpression of profibrotic factors, enhances apoptosis and mononuclear cell infiltration. J Physiol Pharmacol. 60, 5–13.

    PubMed  Google Scholar 

  89. Schaefer, L., Macakova, K., Raslik, I., Micegova, M., Gröne, H. J., Schönherr, E., et al (2002) Absence of decorin adversely influences tubulointerstitial fibrosis of the obstructed kidney by enhanced apoptosis and increased inflammatory reaction. Am J Pathol. 160, 1181–1191.

    Article  PubMed  CAS  Google Scholar 

  90. Isaka, Y., Brees, D. K., Ikegaya, K., Kaneda, Y., Imai, E., Noble, N. A., et al (1996) Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med. 2, 418–423.

    Article  PubMed  CAS  Google Scholar 

  91. Border, W. A., Noble, N. A., Yamamoto, T., Harper, J. R., Yamaguchi, Y., Pierschbacher, M. D., et al (1992) Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 360, 361–364.

    Article  PubMed  CAS  Google Scholar 

  92. Zhang, Z., Wu, F., Zheng, F., and Li, H. (2010) Adenovirus-mediated decorin gene transfection has therapeutic effects in a streptozocin-induced diabetic rat model. Nephron Exp Nephrol. 116, e11–21.

    Article  PubMed  CAS  Google Scholar 

  93. Wu, H., Wang, S., Xue, A., Liu, Y., Liu, Y., Wang, H., et al (2008) Overexpression of decorin induces apoptosis and cell growth arrest in cultured rat mesangial cells in vitro. Nephrology (Carlton) 13, 607–615.

    Article  CAS  Google Scholar 

  94. Schaefer, L., Beck, K. F., Raslik, I., Walpen, S., Mihalik, D., Micegova, M., et al (2003) Biglycan, a nitric oxide-regulated gene, affects adhesion, growth, and survival of mesangial cells. J Biol Chem. 278, 26227–26237.

    Article  PubMed  CAS  Google Scholar 

  95. Lin, X., Wei, G., Shi, Z., Dryer, L., Esko, J. D., Wells, D. E., et al (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol. 224, 299–311.

    Article  PubMed  CAS  Google Scholar 

  96. Chen, S., Wassenhove-McCarthy, D. J., Yamaguchi, Y., Holzman, L. B., van Kuppevelt, T. H., Jenniskens, G. J., et al (2008) Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney Int. 74, 289–299.

    Article  PubMed  CAS  Google Scholar 

  97. Chen, S., Wassenhove-McCarthy, D., Yamaguchi, Y., Holzman, L., van Kuppevelt, T. H., Orr, A. W., et al. (2010) Podocytes require the engagement of cell surface heparan sulfate proteoglycans for adhesion to extracellular matrices. Kidney Int 78, 1088–1099.

    Article  PubMed  CAS  Google Scholar 

  98. Roberts, I. S. D. and Gleadle, J. M. (2008) Familial nephropathy and multiple exostoses with exostosin-1 (EXT1) gene mutation. J Am Soc Nephrol. 19, 450–453.

    Article  PubMed  CAS  Google Scholar 

  99. Condac, E., Silasi-Mansat, R., Kosanke, S., Schoeb, T., Towner, R., Lupu, F., et al (2007) Polycystic disease caused by deficiency in xylosyltransferase 2, an initiating enzyme of glycosaminoglycan biosynthesis. Proc Natl Acad Sci USA 104, 9416–9421.

    Article  PubMed  CAS  Google Scholar 

  100. Hendig, D., Tarnow, L., Kuhn, J., Kleesiek, K., and Götting, C. (2008) Identification of a xylosyltransferase II gene haplotype marker for diabetic nephropathy in type 1 diabetes. Clin Chim Acta 398, 90–94.

    Article  PubMed  CAS  Google Scholar 

  101. Li, J. P., Gong, F., Hagner-McWhirter, A., Forsberg, E., Abrink, M., Kisilevsky, R., et al (2003) Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J Biol Chem. 278, 28363–28366.

    Article  PubMed  CAS  Google Scholar 

  102. Jia, J., Maccarana, M., Zhang, X., Bespalov, M., Lindahl, U., and Li, J. P. (2009) Lack of L-iduronic acid in heparan sulfate affects interaction with growth factors and cell signaling. J Biol Chem. 284, 15942–15950.

    Article  PubMed  CAS  Google Scholar 

  103. Bullock, S. L., Fletcher, J. M., Beddington, R. S., and Wilson, V. A. (1998) Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes and Dev. 12, 1894–1906.

    Article  PubMed  CAS  Google Scholar 

  104. Merry, C. L., Bullock, S. L., Swan, D. C., Backen, A. C., Lyon, M., Beddington, R. S., et al (2001) The molecular phenotype of heparan sulfate in the Hs2st –/– mutant mouse. J Biol Chem. 276, 35429–35434.

    Article  PubMed  CAS  Google Scholar 

  105. McLaughlin, D., Karlsson, F., Tian, N., Pratt, T., Bullock, S. L., Wilson, V. A., et al (2003) Specific modification of heparan sulphate is required for normal cerebral cortical development. Mech Dev. 120, 1481–1488.

    Article  PubMed  CAS  Google Scholar 

  106. Shah, M. M., Sakurai, H., Sweeney, D. E., Gallegos, T. F., Bush, K. T., Esko, J. D., et al (2010) Hs2st mediated kidney mesenchyme induction regulates early ureteric bud branching. Dev Biol. 339, 354–365.

    Article  PubMed  CAS  Google Scholar 

  107. Edge, A. S. B. and Spiro, R. G. (2000) A specific structural alteration in the heparan sulphate of human glomerular basement membrane in diabetes. Diabetologia 43, 1056–1059.

    Article  PubMed  CAS  Google Scholar 

  108. Ratelade, J., Arrondel, C., Hamard, G., Garbay, S., Harvey, S., Biebuyck, N., et al (2010) A murine model of Denys-Drash syndrome reveals novel transcriptional targets of WT1 in podocytes. Hum Mol Genet. 19, 115.

    Article  PubMed  CAS  Google Scholar 

  109. Langsdorf, A., Schumacher, V., Shi, X., Tran, T., Zaia, J., Jain, S., et al. (2011) Expression regulation and function of Sulfs in the spermatogonial stem cell niche. Glycobiology 21, 152–161.

    Article  PubMed  CAS  Google Scholar 

  110. Holst, C. R., Bou-Reslan, H., Gore, B. B., Wong, K., Grant, D., Chalasani, S., et al (2007) Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival. PLoS One 2, e575.

    Article  PubMed  CAS  Google Scholar 

  111. Lum, D. H., Tan, J., Rosen, S. D., and Werb, Z. (2007) Gene trap disruption of the mouse heparan sulfate 6-O-endosulfatase gene, Sulf2. Mol Cell Biol. 27, 678–688.

    Article  PubMed  CAS  Google Scholar 

  112. Lamanna, W. C., Baldwin, R. J., Padva, M., Kalus, I., Ten Dam, G., van Kuppevelt, T. H., et al (2006) Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. Biochem J. 400, 6373.

    Article  PubMed  CAS  Google Scholar 

  113. Ai, X., Kitazawa, T., Do, A. T., Kusche-Gullberg, M., Labosky, P. A., and Emerson, C. P. Jr. (2007) SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation. Development 134, 3327–3338.

    Article  PubMed  CAS  Google Scholar 

  114. Schumacher V.A., Schlötzer-Schrehardt U., Karumanchi S.A., Shi X., Zaia J., Jeruschke S., et al. (2011) WT1-dependent sulfatase expression maintains the normal glomerular filtration barrier. J Am Soc Nephrol. 22, 1286–1296.

    Google Scholar 

  115. van den Hoven, M. J., Rops, A. L., Vlodavsky, I., Levidiotis, V., Berden, J. H., and van der Vlag, J. (2007) Heparanase in glomerular diseases. Kidney Int. 72, 543–548.

    Article  PubMed  CAS  Google Scholar 

  116. Harvey, S. J. and Miner, J. H. (2008) Revisiting the glomerular charge barrier in the molecular era. Curr Opin Nephrol Hypertens. 17, 393–398.

    Article  PubMed  CAS  Google Scholar 

  117. Li, J. P., Galvis, M. L., Gong, F., Zhang, X., Zcharia, E., Metzger, S., et al (2005) In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc Natl Acad Sci. 102, 6473–6477.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is supported by grants from the Agence Nationale de la Recherche (ANR) and the Inserm Avenir program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott J. Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Harvey, S.J. (2012). Models for Studies of Proteoglycans in Kidney Pathophysiology. In: Rédini, F. (eds) Proteoglycans. Methods in Molecular Biology, vol 836. Humana Press. https://doi.org/10.1007/978-1-61779-498-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-498-8_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-497-1

  • Online ISBN: 978-1-61779-498-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics