Skip to main content

Following Protein–Glycosaminoglycan Polysaccharide Interactions with Differential Scanning Fluorimetry

  • Protocol
  • First Online:
Proteoglycans

Abstract

Studies of the structural changes invoked in proteins by the binding of the glycosaminoglycan (GAG) polysaccharide portion of proteoglycans are of increasing importance to research in a wide range of fields, from biochemistry and molecular biology to biotechnology and medicine. One important aspect is the degree of stabilisation or destabilisation induced in a protein by the binding of these anionic materials, and this can affect enzyme activity, the stability of complexes, folding and the formation of aggregates, including those in neurodegenerative processes. A simple method, able to determine the effect of interactions with GAG polysaccharides on protein stability is described, based on the propensity of a fluorescent dye—Sypro™ Orange—to present differentiable fluorescence emission spectra following contact with exposed core amino acid residues. The method requires only commonly available and inexpensive equipment and is suitable for a multi-well format, allowing multiple readings to be made simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Esko, J. D. and Selleck, S. B. (2002) Order out of chaos: Assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem. 71, 435–471.

    Article  PubMed  CAS  Google Scholar 

  2. Hovingh, P., Piepkorn, M., and Linker, A. (1986) Biological implications of the structural, antithrombin affinity and anticoagulant activity relationships among vertebrate heparins and heparan sulphates. Biochem J. 237, 573–581.

    PubMed  CAS  Google Scholar 

  3. Patey, S. J., Edwards, E. A., Yates, E. A., and Turnbull, J. E. (2006) Heparin derivatives as inhibitors of BACE-1, the Alzheimer’s beta-secretase, with reduced activity against factor Xa and other proteases. J Med Chem. 49, 6129–6132.

    Article  PubMed  CAS  Google Scholar 

  4. Guimond, S., Maccarana, M., Olwin, B. B., Lindahl, U., and Rapraeger, A. C. (1993) Activating and inhibitory heparin sequences for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J Biol Chem. 268, 23906–23914.

    PubMed  CAS  Google Scholar 

  5. Pye, D. A., Vives, R. R., Turnbull, J. E., Hyde, P., and Gallagher, J. T. (1998) Heparan sulfate oligosaccharides require 6-O-sulfation for promotion of basic fibroblast growth factor mitogenic activity. J Biol Chem. 273, 22936–22942.

    Article  PubMed  CAS  Google Scholar 

  6. Sugaya, N., Habuchi, H., Nagai, N., Ashikari-Hada, S., and Kimata, K. (2008) 6-O-sulfation of heparan sulfate differentially regulates various fibroblast growth factor-dependent signalings in culture. J Biol Chem. 283, 10366–10376.

    Article  PubMed  CAS  Google Scholar 

  7. Seyrek, E., Dubin, P. L., and Henriksen, J. (2007) Nonspecific electrostatic binding characteristics of the heparin-antithrombin interaction. Biopolymers 86, 249–259.

    Article  PubMed  CAS  Google Scholar 

  8. Rudd, T. R. and Yates, E. A. (2010) Confor-mational degeneracy restricts the effective information content of heparan sulfate. Mol Biosyst. 6, 902–908.

    Article  PubMed  CAS  Google Scholar 

  9. Rudd, T. R., Uniewicz, K. A., Ori, A., Giumond, S. E., Skidmore, M. A., Gaudesi, D., et al. (2010) Comparable stabilisation, structural changes and activites can be induced in FGF by a variety of HS and non-GAG analogues: implications for sequence-activity relationships. Org Biomol Chem. DOI: 10.1039/c1030ob00246a.

  10. Delehedde, M., Lyon, M., Gallagher, J. T., Rudland, P. S., and Fernig, D. G. (2002) Fibroblast growth factor-2 binds to small heparin-derived oligosaccharides and stimulates a sustained phosphorylation of p42/44 mitogen-activated protein kinase and proliferation of rat mammary fibroblasts. Biochem J. 366, 235–244.

    PubMed  CAS  Google Scholar 

  11. Gettins, P. (1987) On the domain structure of antithrombin III. Tentative localization of the heparin binding region using 1H NMR spectroscopy. Biochemistry 26, 4403–4408.

    Article  PubMed  CAS  Google Scholar 

  12. Guzman-Casado, M., Cardenete, A., Gimanez-Gallego, G., and Parody-Morreale, A. (2001) Myo-inositol hexasulphate and low molecular weight heparin binding to human acidic fibroblast growth factor: A calorimetric and FTIR study. Int J Biol Macromol. 28, 305–313.

    Article  PubMed  CAS  Google Scholar 

  13. Svensson, G., Linse, S., and Mani, K. (2009) Chemical and thermal unfolding of glypican-1: Protective effect of heparan sulfate against heat-induced irreversible aggregation. Biochemistry 48, 9994–10004.

    Article  PubMed  CAS  Google Scholar 

  14. Zakrzewska, M., Wiedlocha, A., Szlachcic, A., Krowarsch, D., Otlewski, J., and Olsnes, S. (2009) Increased protein stability of FGF1 can compensate for its reduced affinity for heparin. J Biol Chem. 284, 25388–25403.

    Article  PubMed  CAS  Google Scholar 

  15. Busby, T. F., Atha, D. H., and Ingham, K. C. (1981) Thermal denaturation of antithrombin III. Stabilization by heparin and lyotropic anions. J Biol Chem. 256, 12140–12147.

    PubMed  CAS  Google Scholar 

  16. Copeland, R. A., Ji, H., Halfpenny, A. J., Williams, R. W., Thompson, K.C., Herber, W. K., et al. (1991) The structure of human acidic fibroblast growth factor and its interaction with heparin. Arch Biochem Biophys. 289, 53–61.

    Article  PubMed  CAS  Google Scholar 

  17. Culajay, J. F., Blaber, S. I., Khurana, A., and Blaber, M. (2000) Thermodynamic characterization of mutants of human fibroblast growth factor 1 with an increased physiological half-life. Biochemistry 39, 7153–7158.

    Article  PubMed  CAS  Google Scholar 

  18. Fan, H., Li, H., Zhang, M., and Russell Middaugh, C. (2007) Effects of solutes on empirical phase diagrams of human fibroblast growth factor 1. J Pharm Sci. 96, 1490–1503.

    Article  PubMed  CAS  Google Scholar 

  19. Prestrelski, S. J., Fox, G. M., and Arakawa, T. (1992) Binding of heparin to basic fibroblast growth factor induces a conformational change. Arch Biochem Biophys. 293, 314–319.

    Article  PubMed  CAS  Google Scholar 

  20. Vemuri, S., Beylin, I., Sluzky, V., Stratton, P., Eberlein, G., and Wang, Y. J. (1994) The stability of bFGF against thermal denaturation. J Pharm Pharmacol. 46, 481–486.

    Article  PubMed  CAS  Google Scholar 

  21. Niesen, F. H., Berglund, H., and Vedadi, M. (2007) The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2, 2212–2221.

    Article  PubMed  CAS  Google Scholar 

  22. Uniewicz, K. A. and Fernig, D. G. (2008) Neuropilins: A versatile partner of extracellular molecules that regulate development and disease. Frontier Biosci. 13, 4339–4360.

    Article  Google Scholar 

  23. Uniewicz et al. (2010) Comparable stabilisation, structural changes and activities can be induced in FGF by a variety of HS and non-GAG analogues: implications for sequence-activity relationships. Org Biomol Chem. 8, 5390–5397.

    Article  Google Scholar 

Download references

Acknowledgements

The European Commission (Marie Curie Early Stage Training Fellowships) is thanked for funding (KA and AO) and North West Cancer Research Fund for support (DGF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin A. Yates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Uniewicz, K.A. et al. (2012). Following Protein–Glycosaminoglycan Polysaccharide Interactions with Differential Scanning Fluorimetry. In: Rédini, F. (eds) Proteoglycans. Methods in Molecular Biology, vol 836. Humana Press. https://doi.org/10.1007/978-1-61779-498-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-498-8_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-497-1

  • Online ISBN: 978-1-61779-498-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics