Skip to main content

Recombination-Based DNA Assembly and Mutagenesis Methods for Metabolic Engineering

  • Protocol
  • First Online:
Microbial Metabolic Engineering

Abstract

In recent years there has been a growing interest in the precise and concerted assembly of multiple DNA fragments of diverse sizes, including chromosomes, and the fine tuning of gene expression levels and protein activity. Commercial DNA assembly solutions have not been conceived to support the cloning of very large or very small genetic elements or a combination of both. Here we summarize a series of protocols that allow the seamless, simultaneous, flexible, and highly efficient assembly of DNA elements of a wide range of sizes (up to hundred thousand base pairs). The protocols harness the power of homologous recombination and are performed either in vitro or within the living cells. The DNA fragments may or may not share homology at their ends. An efficient site-directed mutagenesis protocol enhanced by homologous recombination is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raymond C. K., Pownder T. A. and Sexson S. L. (1999) General method for plasmid construction using homologous recombination. Biotechniques 26, 134–8, 140–1

    Google Scholar 

  2. Willer D. O., Yao X. D., Mann M. J. and Evans D. H. (2000) In vitro concatemer formation catalyzed by vaccinia virus DNA polymerase. Virology 278, 562–9

    Article  PubMed  CAS  Google Scholar 

  3. Hamilton M. D., Nuara A. A., Gammon D. B., Buller R. M. and Evans D. H. (2007) Duplex strand joining reactions catalyzed by vaccinia virus DNA polymerase. Nucleic Acids Res 35, 143–51

    Article  PubMed  CAS  Google Scholar 

  4. Zhu B., Cai G., Hall E. O. and Freeman G. J. (2007) In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques 43, 354–9

    Article  PubMed  CAS  Google Scholar 

  5. Gibson D. G., Benders G. A., Andrews-Pfannkoch C., Denisova E. A., Baden-Tillson H., Zaveri J., et al. (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–20

    Article  PubMed  CAS  Google Scholar 

  6. Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A., 3rd and Smith H. O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6, 343–5

    Article  PubMed  CAS  Google Scholar 

  7. Cheo D. L., Titus S. A., Byrd D. R., Hartley J. L., Temple G. F. and Brasch M. A. (2004) Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones. Genome Res 14, 2111–20

    Article  PubMed  CAS  Google Scholar 

  8. Hartley J. L., Temple G. F. and Brasch M. A. (2000) DNA cloning using in vitro site-specific recombination. Genome Res 10, 1788–95

    Article  PubMed  CAS  Google Scholar 

  9. Bubeck P., Winkler M. and Bautsch W. (1993) Rapid cloning by homologous recombination in vivo. Nucleic Acids Res 21, 3601–2

    Article  PubMed  CAS  Google Scholar 

  10. Zhang Y., Buchholz F., Muyrers J. P. and Stewart A. F. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20, 123–8

    Article  PubMed  CAS  Google Scholar 

  11. Datsenko K. A. and Wanner B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97, 6640–5

    Article  PubMed  CAS  Google Scholar 

  12. Liu Q., Li M. Z., Leibham D., Cortez D. and Elledge S. J. (1998) The univector plasmid-fusion system, a method for rapid construction of recombinant DNA without restriction enzymes. Curr Biol 8, 1300–9

    Article  PubMed  CAS  Google Scholar 

  13. Lebedenko E. N., Birikh K. R., Plutalov O. V. and Berlin Yu A. (1991) Method of artificial DNA splicing by directed ligation (SDL). Nucleic Acids Res 19, 6757–61

    Article  PubMed  CAS  Google Scholar 

  14. Aslanidis C. and de Jong P. J. (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18, 6069–74

    Article  PubMed  CAS  Google Scholar 

  15. Li M. Z. and Elledge S. J. (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4, 251–6

    Article  PubMed  CAS  Google Scholar 

  16. Gao X., Yo P., Keith A., Ragan T. J. and Harris T. K. (2003) Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res 31, e143

    Article  PubMed  Google Scholar 

  17. Orr-Weaver T. L., Szostak J. W. and Rothstein R. J. (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci USA 78, 6354–8

    Article  PubMed  CAS  Google Scholar 

  18. Hinnen A., Hicks J. B. and Fink G. R. (1978) Transformation of yeast. Proc Natl Acad Sci USA 75, 1929–33

    Article  PubMed  CAS  Google Scholar 

  19. Larionov V., Kouprina N., Eldarov M., Perkins E., Porter G. and Resnick M. A. (1994) Transformation-associated recombination between diverged and homologous DNA repeats is induced by strand breaks. Yeast 10, 93–104

    Article  PubMed  CAS  Google Scholar 

  20. Ma H., Kunes S., Schatz P. J. and Botstein D. (1987) Plasmid construction by homologous recombination in yeast. Gene 58, 201–16

    Article  PubMed  CAS  Google Scholar 

  21. Marykwas D. L. and Passmore S. E. (1995) Mapping by multifragment cloning in vivo. Proc Natl Acad Sci USA 92, 11701–5

    Article  PubMed  CAS  Google Scholar 

  22. Ebersole T., Okamoto Y., Noskov V. N., Kouprina N., Kim J. H., Leem S. H., et al. (2005) Rapid generation of long synthetic tandem repeats and its application for analysis in human artificial chromosome formation. Nucleic Acids Res 33, e130

    Article  PubMed  Google Scholar 

  23. Larionov V., Kouprina N., Graves J., Chen X. N., Korenberg J. R. and Resnick M. A. (1996) Specific cloning of human DNA as yeast artificial chromosomes by transformation-associated recombination. Proc Natl Acad Sci USA 93, 491–6

    Article  PubMed  CAS  Google Scholar 

  24. Gibson D. G. (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37, 6984–90

    Article  PubMed  CAS  Google Scholar 

  25. Lartigue C., Vashee S., Algire M. A., Chuang R. Y., Benders G. A., Ma L., et al. (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325, 1693–6

    Article  PubMed  CAS  Google Scholar 

  26. Gibson D. G., Benders G. A., Axelrod K. C., Zaveri J., Algire M. A., Moodie M., et al. (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci USA 105, 20404–9

    Article  PubMed  CAS  Google Scholar 

  27. Gibson D. G., Glass J. I., Lartigue C., Noskov V. N., Chuang R. Y., Algire M. A., et al. (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–6

    Article  PubMed  CAS  Google Scholar 

  28. DeMarini D. J., Creasy C. L., Lu Q., Mao J., Sheardown S. A., Sathe G. M., et al. (2001) Oligonucleotide-mediated, PCR-independent cloning by homologous recombination. Biotechniques 30, 520–3

    PubMed  CAS  Google Scholar 

  29. Raymond C. K., Sims E. H. and Olson M. V. (2002) Linker-mediated recombinational subcloning of large DNA fragments using yeast. Genome Res 12, 190–7

    Article  PubMed  CAS  Google Scholar 

  30. Vidal M., Brachmann R. K., Fattaey A., Harlow E. and Boeke J. D. (1996) Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc Natl Acad Sci USA 93, 10315–20

    Article  PubMed  CAS  Google Scholar 

  31. Chevray P. M. and Nathans D. (1992) Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci USA 89, 5789–93

    Article  PubMed  CAS  Google Scholar 

  32. Struhl K., Stinchcomb D. T., Scherer S. and Davis R. W. (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA 76, 1035–9

    Article  PubMed  CAS  Google Scholar 

  33. Clarke L. and Carbon J. (1980) Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–9

    Article  PubMed  CAS  Google Scholar 

  34. Murray J. A. (1987) Bending the rules: the 2-mu plasmid of yeast. Mol Microbiol 1, 1–4

    Article  PubMed  CAS  Google Scholar 

  35. Kline B. C. (1985) A review of mini-F plasmid maintenance. Plasmid 14, 1–16

    Article  PubMed  CAS  Google Scholar 

  36. Boeke J. D., LaCroute F. and Fink G. R. (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197, 345–6

    Article  PubMed  CAS  Google Scholar 

  37. Hutchison C. A., 3rd, Phillips S., Edgell M. H., Gillam S., Jahnke P. and Smith M. (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253, 6551–60

    PubMed  CAS  Google Scholar 

  38. Stemmer W. P. and Morris S. K. (1992) Enzymatic inverse PCR: a restriction site independent, single-fragment method for high-efficiency, site-directed mutagenesis. Biotechniques 13, 214–20

    PubMed  CAS  Google Scholar 

  39. Kunkel T. A. (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82, 488–92

    Article  PubMed  CAS  Google Scholar 

  40. Hemsley A., Arnheim N., Toney M. D., Cortopassi G. and Galas D. J. (1989) A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res 17, 6545–51

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Products are For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Katzen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Liang, X. et al. (2012). Recombination-Based DNA Assembly and Mutagenesis Methods for Metabolic Engineering. In: Cheng, Q. (eds) Microbial Metabolic Engineering. Methods in Molecular Biology, vol 834. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-483-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-483-4_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-482-7

  • Online ISBN: 978-1-61779-483-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics