Creation of New Metabolic Pathways or Improvement of Existing Metabolic Enzymes by In Vivo Evolution in Escherichia coli

  • Isabelle Meynial-SallesEmail author
  • Philippe Soucaille
Part of the Methods in Molecular Biology book series (MIMB, volume 834)


A method for in vivo evolution of metabolic pathways in bacteria is described. This method is a powerful tool for synthetic biology type of metabolic design and can lead to the creation of new metabolic pathways or the improvement of existing metabolic enzymes. The proposed strategy also permits to relate the evolved phenotype to the genotype and to analyze evolution phenomenon at the genetic, biochemical, and metabolic levels.

Key words

In vivo evolution New metabolic pathway Metabolic pressure Microorganisms 



This work was supported through several independent collaborations with both Genencor and Metabolic Explorer companies, FP5 European project (contract nº QLRT-1999-01364), and the French National Research Agency (contract PRIB-2005 Bioglycol).


  1. 1.
    Atwood, K. C., Schneider, L. K., Ryan, F. J., (1951) Selective mechanisms in bacteria. Cold Spring Harbor Symp. Quant. Biol. 16, 345–355.Google Scholar
  2. 2.
    Dykhuizen, D. E., (1990) Experimental studies of natural selection in bacteria. Annu. Rev. Ecol. Syst. 21, 373–398.CrossRefGoogle Scholar
  3. 3.
    Hall, B.G., Zuzel T., (1980) Evolution of a new enzymatic function by recombination within a gene. Proc. Natl. Acad. Sci. USA. 77, 3529–3533.PubMedCrossRefGoogle Scholar
  4. 4.
    Hall, B.G., (1981) Changes in the substrate specificities of an enzyme during directed evolution of new functions. Biochemistry. 20, 4042–4049.PubMedCrossRefGoogle Scholar
  5. 5.
    Lu, Z., Cabiscol, E., Obradorsi, N., Tamarit, J., Ros, J., Aguilari, J., Lin, E.C.C., 1998. Evolution of an Escherichia coli Protein with Increased Resistance to Oxidative Stress. J. Biol. Chem. 273, 8308–8316.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee D-H and Palsson B. (2010) Adaptive evolution of Escherichia coli K12 MG16555 during growth on a nonnative carbon source, L 1.2 propanediol. Appl. Environ. Microb. 76, 4158–4168.CrossRefGoogle Scholar
  7. 7.
    Membrillo-Hernandez, J., Echave, P., Cabiscol, E., Tamarit, J., Ros, J., Lin, E.C.C. (2000) Evolution of the adhE Gene Product of Escherichia coli from a Functional Reductase to a Dehydrogenase. J. Biol. Chem . 275, 33869–33875.PubMedCrossRefGoogle Scholar
  8. 8.
    Hua Q., Joyce A.R., Palsson B. and Fong S. S. (2007) Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl. Environ. Microb. 73, 4639–4647.CrossRefGoogle Scholar
  9. 9.
    Applebee M. K., Herrgård MJ, Palsson BØ. (2008) Impact of individual mutations on increased fitness in adaptively evolved strains of Escherichia coli. J. bacteriol. 190, 5087–5094.PubMedCrossRefGoogle Scholar
  10. 10.
    Meynial-Salles I.,  Forchammer N., Croux C. Girbal L., and Soucaille P. (2007) Evolution of a Saccharomyces cerevisiae metabolic pathway in Escherichia coli. Met Eng. 9, 152–159. CrossRefGoogle Scholar
  11. 11.
    Chateau M., Gonzalez B., Meynial-Salles I., Soucaille P. Zink O. (2005) Method for the preparation of an evolved microorganism for the creation or the modification of metabolic pathways: US patent 205/0054060.Google Scholar
  12. 12.
    Auriol C., Bestel-Corre G., Claude J. B., Soucaille P. and Meynial-Salles I. (2011) Stress induced evolution of Escherichia coli points to new concepts in respiratory cofactor selectivity. Proc. Natl. Acad. Sci USA. 108, 1278–1283.PubMedCrossRefGoogle Scholar
  13. 13.
    Datsenko, K. A., Wanner, B. L., 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA. 97, 6640–6645.PubMedCrossRefGoogle Scholar
  14. 14.
    Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 158, 9–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Kues U. and Stalh U. (1989) Replication plasmids in Gram-Negative Bacteria. Microbiological reviews. 53, 491–516.PubMedGoogle Scholar
  16. 16.
    Herring C.D. CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, Albert TJ, Blattner FR, van den Boom D, Cantor CR, Palsson BØ (2006) Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet. 38, 1406–1412.PubMedCrossRefGoogle Scholar
  17. 17.
    Conrad T.M., Joyce AR, Applebee MK, Barrett CL, Xie B, Gao Y, Palsson BØ. (2009) Whole-genome resequencing of Escherichia coli K-12 MG1655 undergoing short-term laboratory evolution in lactate minimal media reveals flexible selection of adaptive mutations. Genome Biol. 10, R118.Google Scholar
  18. 18.
    Burgard A., Pharkya P. and Maranas C. (2003) OptKnock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization: Biotechnol. Bioeng. 84, 647–657.CrossRefGoogle Scholar
  19. 19.
    Patil K. R., Rocha I., Forster J. and Nielsen J. (2005) Evolutionary programming as a platform for in silico metabolic engineering: BMC Bioinformatics, 6. 1–12.Google Scholar
  20. 20.
    Miller JH (1992) A short course in bacterial genetics. A laboratory manual and handbook for Escherichica coli and related bacteria.Google Scholar
  21. 21.
    Meynial-Salles I., Cervin M. A. and Soucaille P. (2005). New tool for metabolic pathway engineering in E. coli: one step method to modulate the expression of chromosomal genes: Appl. Environ. Microbiol. 71, 2140–2144. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Université de ToulouseToulouseFrance
  2. 2.Metabolic Explorer, Biopôle Clermont-LimagneSaint-BeauzireFrance

Personalised recommendations