Quantifying Plasmid Copy Number to Investigate Plasmid Dosage Effects Associated with Directed Protein Evolution

  • Samuel Million-Weaver
  • David L. Alexander
  • Jennifer M. Allen
  • Manel CampsEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 834)


Our laboratory specializes in directed protein evolution, i.e., evolution of proteins under defined selective pressures in the laboratory. Our target genes are encoded in ColE1 plasmids to facilitate the generation of libraries in vivo. We have observed that when random mutations are not restricted to the coding sequence of the target genes, directed evolution results in a strong positive selection of plasmid origin of replication (ori) mutations. Surprisingly, this is true even during evolution of new biochemical activities, when the activity that is being selected was not originally present. The selected plasmid ori mutations are diverse and produce a range of plasmid copy numbers, suggesting a complex interplay between ori and coding mutations rather than a simple enhancement of level of expression of the target gene. Thus, plasmid dosage may contribute significantly to evolution by fine-tuning levels of activity. Here, we present examples illustrating these observations as well as our methods for efficient quantification of plasmid copy number.

Key words

Recombinant gene expression ColE1 plasmid Plasmid copy number Green fluorescent protein ALKBH2 Transformation Mutagenesis R-loop RNA I RNA II Directed evolution Methyl methane sulfonate N-methyl-N′-nitro-N-nitrosoguanidine 



The authors would like to thank Dr. Barbara Sedgwick for the gift of the BS141 (AB1157 F’) and BS143 (AB1157 alkB F’) strains, Dr. Catherine Joyce for the gift of the CJ278 (polAΔ) strain, Dr. Lawrence Loeb for mentorship in the initial stages of this work, and Jacob Marquette for his help with the generation of pGFPuv libraries. This work was supported by K08 award CA116429-04 to Manel Camps.


  1. 1.
    Polisky, B. (1988) ColE1 replication control circuitry: sense from antisense. Cell, 55, 929–932.PubMedCrossRefGoogle Scholar
  2. 2.
    Cesareni, G., Helmer-Citterich, M. and Castagnoli, L. (1991) Control of ColE1 plasmid replication by antisense RNA. Trends Genet, 7, 230–235.PubMedGoogle Scholar
  3. 3.
    Camps, M. (2010) Modulation of ColE1-like plasmid replication for recombinant gene expression. Recent Pat DNA Gene Seq, 4, 58–73.PubMedCrossRefGoogle Scholar
  4. 4.
    Masai, H., Nomura, N., Kubota, Y. and Arai, K. (1990) Roles of phi X174 type primosome- and G4 type primase-dependent primings in initiation of lagging and leading strand syntheses of DNA replication. J Biol Chem, 265, 15124–15133.PubMedGoogle Scholar
  5. 5.
    Polisky, B., Zhang, X.Y. and Fitzwater, T. (1990) Mutations affecting primer RNA interaction with the replication repressor RNA I in plasmid CoIE1: potential RNA folding pathway mutants. EMBO J, 9, 295–304.PubMedGoogle Scholar
  6. 6.
    Camps, M., Naukkarinen, J., Johnson, B.P. and Loeb, L.A. (2003) Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci USA, 100, 9727–9732.PubMedCrossRefGoogle Scholar
  7. 7.
    Troll, C.J., Alexander, D.L., Allen, J.M. and Marquette, J.T. (2010) Mutagenesis and functional selection protocols for directed evolution of proteins in E. coli. The Journal of Visualized Experiments, Mar 16(49). pii: 2505. doi: 10.3791/2505.Google Scholar
  8. 8.
    Allen, J.M., Simcha, D.M., Ericson, N.G., Alexander, D.L., Marquette, J.T., Van Biber, B.P., Troll, C.J., Karchin, R., Bielas, J.H., Loeb, L.A. et al. (2011) Mutational footprints of ColE1 plasmid replication by error-prone DNA polymerase I identify primosome loading and sites of Okazaki primer processing. Nucleic Acids Research, 39, 7020–7033.Google Scholar
  9. 9.
    Drablos, F., Feyzi, E., Aas, P.A., Vaagbo, C.B., Kavli, B., Bratlie, M.S., Pena-Diaz, J., Otterlei, M., Slupphaug, G. and Krokan, H.E. (2004) Alkylation damage in DNA and RNA--repair mechanisms and medical significance. DNA Repair (Amst), 3, 1389–1407.CrossRefGoogle Scholar
  10. 10.
    Sedgwick, B., Robins, P. and Lindahl, T. (2006) Direct removal of alkylation damage from DNA by AlkB and related DNA dioxygenases. Methods Enzymol, 408, 108–120.PubMedCrossRefGoogle Scholar
  11. 11.
    Camps, M., Herman, A., Loh, E. and Loeb, L.A. (2007) Genetic constraints on protein evolution. Crit Rev Biochem Mol Biol, 42, 313–326.PubMedCrossRefGoogle Scholar
  12. 12.
    Phillips, G.N., Jr. (2006) The three-dimensional structure of green fluorescent protein and its implications for function and design. Methods Biochem Anal, 47, 67–82.PubMedGoogle Scholar
  13. 13.
    Crameri, A., Whitehorn, E.A., Tate, E. and Stemmer, W.P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol, 14, 315–319.PubMedCrossRefGoogle Scholar
  14. 14.
    Hashimoto-Gotoh, T. and Inselburg, J. (1979) ColE1 plasmid incompatibility: localization and analysis of mutations affecting incompatibility. J Bacteriol, 139, 608–619.PubMedGoogle Scholar
  15. 15.
    Schmidt, L. and Inselburg, J. (1982) ColE1 copy number mutants. J Bacteriol, 151, 845–854.PubMedGoogle Scholar
  16. 16.
    Fitzwater, T., Zhang, X.Y., Elble, R. and Polisky, B. (1988) Conditional high copy number ColE1 mutants: resistance to RNA1 inhibition in vivo and in vitro. EMBO J, 7, 3289–3297.PubMedGoogle Scholar
  17. 17.
    Merlin, S. and Polisky, B. (1993) Analysis of establishment phase replication of the plasmid ColE1. J Mol Biol, 230, 137–150.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang, Z., Xiang, L., Shao, J., Wegrzyn, A. and Wegrzyn, G. (2006) Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb Cell Fact, 5, 34.PubMedCrossRefGoogle Scholar
  19. 19.
    Carapuca, E., Azzoni, A.R., Prazeres, D.M., Monteiro, G.A. and Mergulhao, F.J. (2007) Time-course determination of plasmid content in eukaryotic and prokaryotic cells using real-time PCR. Mol Biotechnol, 37, 120–126.PubMedCrossRefGoogle Scholar
  20. 20.
    Kim, D., Rhee, Y., Rhodes, D., Sharma, V., Sorenson, O., Greener, A. and Smider, V. (2005) Directed evolution and identification of control regions of ColE1 plasmid replication origins using only nucleotide deletions. J Mol Biol, 351, 763–775.PubMedCrossRefGoogle Scholar
  21. 21.
    Castagnoli, L., Lacatena, R.M. and Cesareni, G. (1985) Analysis of dominant copy number mutants of the plasmid pMB1. Nucleic Acids Res, 13, 5353–5367.PubMedCrossRefGoogle Scholar
  22. 22.
    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31, 3406–3415.PubMedCrossRefGoogle Scholar
  23. 23.
    Wong, T.S., Roccatano, D., Zacharias, M. and Schwaneberg, U. (2006) A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol, 355, 858–871.PubMedCrossRefGoogle Scholar
  24. 24.
    Ausubel F M (1995) Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (Wiley, New York).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Samuel Million-Weaver
    • 1
  • David L. Alexander
    • 1
  • Jennifer M. Allen
    • 1
  • Manel Camps
    • 1
    Email author
  1. 1.Department of Microbiology and Environmental ToxicologyUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations