Advertisement

Minimization and Prevention of Phage Infections in Bioprocesses

  • Marcin LosEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 834)

Abstract

Phage infections in bacterial bioprocesses constitute one of the most devastating threats to the productivity of the biotechnology facilities. There are several factors, which can decide if an infection would occur, and if it would turn into an outbreak and heavy contamination of the production facility. This issue is discussed on the basis of literature survey and experience of Phage Consultants.

Key words

Phage Contamination Fermentation Bioreactor Contamination prevention Phage outbreak Decontamination 

Notes

Acknowledgments

This work was partially supported by the European Union within European Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-00-008/08).

References

  1. 1.
    Whitman, W.B., Coleman, D.C., Wiebe, W.J. (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA. 95, 6578–6583.PubMedCrossRefGoogle Scholar
  2. 2.
    Primrose, S. B. (1990). Controlling bacteriophage infections in industrial bioprocesses, p. 1–10. In J. Reiser (ed.), Applied molecular genetics. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  3. 3.
    Bogosian, G. (2006) Control of bacteriophage in commercial microbiology and fermentation facilities. In Calendar R, Abedon ST (Ed.), “The Bacteriophages. 2nd ed”., Oxford University Press, New York.Google Scholar
  4. 4.
    Wietzorrek, A., Schwarz, H., Herrmann, C., Braun, V. (2006) The genome of the novel phage Rtp, with a rosette-like tail tip, is homologous to the genome of phage T1 . J. Bacteriol. 188, 1419–1436.PubMedCrossRefGoogle Scholar
  5. 5.
    Bruttin, A., Brüssow, H. (1996) Site-specific spontaneous deletions in three genome regions of a temperate Streptococcus thermophilus phage. Virology 219, 96–104.PubMedCrossRefGoogle Scholar
  6. 6.
    Rotman, E., Amado, L., Kuzminov, A. (2010) Unauthorized horizontal spread in the laboratory environment: the tactics of Lula, a temperate lambdoid bacteriophage of Escherichia coli. PLoS One 5:e11106.PubMedCrossRefGoogle Scholar
  7. 7.
    Los, M., Kuzio, J., McConnell, M.R., Kropinski, A.M., Wegrzyn, G, Christie, G.E., (2010) Lysogenic Conversion in Bacteria of Importance to the food Industry in “Bacteriophages In the Control of Food- and Waterborne Pathogens”. ASM press, Washington, DC, USA. 157–198.Google Scholar
  8. 8.
    Los, M., Czyz, A., Sell, E., Wegrzyn, A., Neubauer, P., Wegrzyn, G. (2004) Bacteriophage contamination: is there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J. Appl. Genet. 45, 111–120.PubMedGoogle Scholar
  9. 9.
    Los, M. (2010). Contamination concerns. European Biopharmaceutical Review, 51, 78–80.Google Scholar
  10. 10.
    Ogata, S. 1980. Bacteriophage contamination in industrial processes. Biotechnol. Bioeng. 22(Suppl. 1), 177–193.Google Scholar
  11. 11.
    Wu,W.-W., Yoshinaga, K., Kanda, K., Kato, F., Murata, A., (1991). Phage S2, another new phage for serine-producing Eschericha coli. Bull. Fac. Agr. Saga Univ. 71, 123–132.Google Scholar
  12. 12.
    Wu, W.-W., Tanaka, K., Kato, F., Murata, A., (1991) Phage S1, new phage for Eschericha coli. Bull. Fac. Agr. Saga Univ. 71, 91–100.Google Scholar
  13. 13.
    Teuber, M., Andresen, A., Sievers, M. (1987) Bacteriophage problems in vinegar fermentations. Biotechnol. Lett. 9, 37–38.CrossRefGoogle Scholar
  14. 14.
    Koptides, M., Barak, I., Sisova, M., Baloghova, E., Ugorackova, J., Timko, J. (1992) Characterization of bacteriophage BFK20 from Brevibacterium flavum. J. Gen. Microbiol. 138, 1387–1391.PubMedGoogle Scholar
  15. 15.
    Jones, D.T., Shirley, M., Wu, X., Keis, S. (2000) Acetone Butanol (AB) Fermentation Process. J. Mol. Microbiol. Biotechnol. 2, 21–26.PubMedGoogle Scholar
  16. 16.
    Maeda, A., Ishii, K., Tanaka, M., Mikami, Y., Arai, T., (1986) KMl, a Bacteriophage of Clostvidium butyvicum J. Gen. Microbiol. 132, 2271–2275.Google Scholar
  17. 17.
    Bartholomew, W. H., Engstrom, D. E.,Goodman, S. S., O’Toole, A. L., Shelton, J. L.,Tannen L. P. (1974) Reduction of contamination in an industrial fermentation plant. Biotechnol Bioeng. 16, 1005–1013.CrossRefGoogle Scholar
  18. 18.
    Josephsen, J., Petersen, A., Neve, H., Waagner, E. (1999) Development of lytic Lactococcus lactis bacteriophages in a Cheddar cheese plant. Int. J. Food Microbiol. 50, 163–171.CrossRefGoogle Scholar
  19. 19.
    Seregant, K., Yeo, R.G. (1966) The production of bacteriophage m2. Biotechnol. Bioeng. 8, 195–215.CrossRefGoogle Scholar
  20. 20.
    Los, M., Wegrzyn, G., Neubauer, P. (2003) A role for bacteriophage T4 rI gene function in the control of phage development during pseudolysogeny and in slowly growing host cells. Res. Microbiol. 154, 547552.PubMedCrossRefGoogle Scholar
  21. 21.
    Los, M., Golec, P., Los, J.M., Weglewska-Jurkiewicz, A., Czyz, A., Wegrzyn, A., Wegrzyn, G., Neubauer, P. (2007) Effective inhibition of lytic development of bacteriophages lambda, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol. 7:13.PubMedCrossRefGoogle Scholar
  22. 22.
    Adams, M.H. (1959). Bacteriophages. Interscience Publishers, New York, pp. 450–456.Google Scholar
  23. 23.
    Los, J.M., Golec, P., Wegrzyn. G., Wegrzyn, A., Los. M. (2008). Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl. Environ. Microbiol. 74, 5113–5120.PubMedCrossRefGoogle Scholar
  24. 24.
    Lilehaug, D. (1997). An improved plaque assay for poor plaque-producing temperate lactococcal bacteriophages. J. Appl. Microbiol. 83, 85–90.CrossRefGoogle Scholar
  25. 25.
    Los, M., Los, J.M., Blohm, L., Spillner, E., Grunwald, T., Albers, J., Hintsche R., Wegrzyn, G. (2005). Rapid detection of viruses using electrical biochips and anti-virion sera. Lett. Appl. Microbiol. 40, 479–85.PubMedCrossRefGoogle Scholar
  26. 26.
    Los,M., Los, J.M., Wegrzyn, G. (2008). Rapid identification of Shiga toxin-producing Escherichia coli (STEC) using electric biochips. Diagn. Mol. Pathol. 17, 179–184.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen, Y., Golding, I., Sawai, S., Guo, L., Cox, E.C. (2005) Population Fitness and the Regulation of Escherichia coli Genes by Bacterial Viruses. PLoS Biol. 3, 1276–1282.Google Scholar
  28. 28.
    Edlin, G., Lin, L., Bitner, R., (1977) Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J Virol. 21, 560–564.PubMedGoogle Scholar
  29. 29.
    Lin, L., Bitner, R. Edlin, G. (1977), Increased Reproductive Fitness of Escherichia coli Lambda Lysogens J Virol. 21, 554–559.PubMedGoogle Scholar
  30. 30.
    Pollard, E., Reaume, M. (1951) Thermal inactivation of bacterial viruses. Arch. Biochem. 32, 278287.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Phage Consultants, IncGdanskPoland

Personalised recommendations