Advertisement

Metabolic Engineering of Antibiotic-Producing Actinomycetes Using In Vitro Transposon Mutagenesis

  • Andrew R. ReevesEmail author
  • J. Mark Weber
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 834)

Abstract

A program of mutation and screening, with stepwise reverse engineering or “decoding” of the improved strain, is a way to better understand the genetics and physiology of the strain improvement process. As more is learned about the genetics of strain improvement, it is hoped that more fundamental principles will emerge about the types of mutations and genetic manipulations that reliably lead to higher producing strains. This will accelerate the construction of higher producing strains by metabolic engineering in the future. In this chapter, a detailed tagged mutagenesis approach is described using in vitro transposon mutagenesis which allowed the successful identification of key genes involved in macrolide (erythromycin) antibiotic biosynthesis.

Key words

In vitro transposon mutagenesis Reverse engineering Actinomycete Protoplast transformation Erythromycin Aeromicrobium erythreum Microtiter fermentation 

Notes

Acknowledgments

This work was supported by The National Institutes of Health, Small Business Innovation Research (SBIR) awards R44GM58943 and R44GM063278.

References

  1. 1.
    Queener SW, Lively DH (1986) Screening and selection for strain improvement, pp. 155-169. In: Demain AL and Solomon NA (eds) Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washington, DC.Google Scholar
  2. 2.
    Vinci VA, Byng, G (1999) Strain Improvement by Non-recombinant Methods, p. 103-113. In: Demain AL and Davies JE (eds), Manual of Industrial Microbiology and Biotechnology, 2nd ed. ASM Press, Washington, DC.Google Scholar
  3. 3.
    Goryshin IY, Reznikoff WS (1998) Tn5 in vitro transposition. J Biol Chem 273, 7367–7374.PubMedCrossRefGoogle Scholar
  4. 4.
    Kirby JR (2007) In vivo Mutagenesis using EZ-Tn5. Methods in Enzymology 421, 17–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26, 1117–1124.PubMedCrossRefGoogle Scholar
  6. 6.
    Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23, 612–616.PubMedCrossRefGoogle Scholar
  7. 7.
    Gehring AM, Wang ST, Kearns DB, Storer NY, Losick R (2004) Novel genes that influence development in Streptomyces coelicolor. J Bacteriol 186, 3570–3577.PubMedCrossRefGoogle Scholar
  8. 8.
    Reeves AR, Cernota WH, Brikun IA, Wesley RK, Weber JM (2004) Engineering precursor flow for increased erythromycin production in Aeromicrobium erythreum. Metab Eng 6, 300–312.PubMedCrossRefGoogle Scholar
  9. 9.
    Tannler S, Zamboni N, Kiraly C, Aymerich S, Sauer U (2008) Screening of Bacillus subtilis transposon mutants with altered riboflavin production. Metab Eng 10, 216–226.PubMedCrossRefGoogle Scholar
  10. 10.
    Trötschel C, Kandirali S, Diaz-Achirica P, Meinhardt A, Morbach S, Krämer R, Burkovski A (2003) GltS, the sodium-coupled L-glutamate uptake system of Corynebacterium I: identification of the corresponding gene and impact on L-glutamate production. Appl Microbiol Biotechnol 60, 738–742.PubMedGoogle Scholar
  11. 11.
    Ikeda M, Ohnishi J, Hayashi M, Mitsuhashi S (2006) A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production. J Ind Microbiol Biotechnol 33, 610–615.PubMedCrossRefGoogle Scholar
  12. 12.
    Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Re-engineering of an L-Arginine and L-Citrulline Producer of Corynebacterium glutamicum. Appl Environ Microbiol 75, 1635–1641.PubMedCrossRefGoogle Scholar
  13. 13.
    Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2006) Effects of methylmalonyl-CoA mutase gene knockouts on erythromycin production in carbohydrate-based and oil-based fermentations of Saccharopolyspora erythraea. J Ind Microbiol Biotechnol 7, 600–609.CrossRefGoogle Scholar
  14. 14.
    Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2007) Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab Eng 9, 293–303.PubMedCrossRefGoogle Scholar
  15. 15.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  16. 16.
    Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser HM, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic Manipulation of Streptomyces, A laboratory manual. Norwich, UK: John Innes Foundation.Google Scholar
  17. 17.
    Roberts AN, Barnett L, Brenner S (1987) Transformation of Arthrobacter and studies on the transcription of the Arthrobacter ermA gene in Streptomyces lividans and E. coli. Biochem J 243, 431–436.PubMedGoogle Scholar
  18. 18.
    Oh SH, Chater KF (1997) Denaturation of ­circular or linear DNA facilitates targeted integrative transformation of Streptomyces coelicolor A3(2): possible relevance to other organisms. J Bacteriol 129, 122–127.Google Scholar
  19. 19.
    Reeves AR, Seshadri R, Brikun IA, Cernota WH, Gonzalez MC, Weber JM (2008) Knockout of the erythromycin biosynthetic cluster gene, eryBI, blocks isoflavone glucoside bioconversion during erythromycin fermentations in Aeromicrobium erythreum but not in Saccharopolyspora erythraea. Appl Env Microbiol 74, 7383–7390.CrossRefGoogle Scholar
  20. 20.
    Kanfer I, Skinner MF, Walker RB (1998). Analysis of macrolide antibiotics. J Chromato 812, 255–286.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Coskata, IncWarrenvilleUSA
  2. 2.Fermalogic, IncChicagoUSA

Personalised recommendations