Advertisement

Use of Proteomic Tools in Microbial Engineering for Biofuel Production

  • Shaoming Mao
  • Kaizhi Jia
  • Yanping Zhang
  • Yin LiEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 834)

Abstract

The production of biofuels from renewable sources by microbial engineering has gained increased attention due to energy and environmental concerns. Butanol is one of the important gasoline-substitute fuels and can be produced by native microorganism Clostridium acetobutylicum. To develop a fundamental tool to understand C. acetobutylicum, a high resolution proteome reference map for this species has been established. To better understand the relationship between butanol tolerance and butanol yield, we performed a comparative proteomic analysis between the wild-type strain DSM 1731 and its mutant Rh8 at acidogenic and solventogenic phases, respectively. The 102 differentially expressed proteins that are mainly involved in protein folding, solvent formation, amino acid metabolism, protein synthesis, nucleotide metabolism, transport, and others were detected. Hierarchical clustering analysis revealed that over 70% of the 102 differentially expressed proteins in mutant Rh8 were either upregulated (e.g., chaperones and solvent formation related) or downregulated (e.g., amino acid metabolism and protein synthesis related) in both acidogenic and solventogenic phase, which, respectively, are only upregulated or downregulated in solventogenic phase in the wild-type strain.

Key words

Comparative proteomics Strain engineering Bio-based chemical Biofuel Clostridium acetobutylicum 

References

  1. 1.
    Stephanopoulos, G. (2007). Challenges in engineering microbes for biofuels production. Science 315, 801–804.PubMedCrossRefGoogle Scholar
  2. 2.
    Rude, M. A. and Schirmer, A. (2009). New microbial fuels: a biotech perspective. Curr Opin Microbiol 12, 274–281.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, S. K., Chou, H., Ham, T. S., Lee, T. S. and Keasling, J. D. (2008). Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19, 556–563.PubMedCrossRefGoogle Scholar
  4. 4.
    Jones, D. T. and Woods, D. R. (1986). Acetone-butanol fermentation revisited. Microbiol Rev 50, 484–524.PubMedGoogle Scholar
  5. 5.
    Lee, S. Y., Park, J. H., Jang, S. H., Nielsen, L. K., Kim, J. and Jung, K. S. (2008). Fermentative butanol production by Clostridia. Biotechnol Bioeng 101, 209–228.PubMedCrossRefGoogle Scholar
  6. 6.
    Ezeji, T. C., Qureshi, N. and Blaschek, H. P. (2007). Bioproduction of butanol from biomass: from genes to bioreactors. Curr Opin Biotechnol 18, 220–227.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, Y. P., Zhu, Y., Zhu, Y. and Li, Y. (2009). The importance of engineering physiological functionality into microbes. Trends Biotech 27, 664–672.CrossRefGoogle Scholar
  8. 8.
    Wackett, L. P. (2008). Biomass to fuels via microbial transformations. Curr Opin Chem Biol 12, 187–193.PubMedCrossRefGoogle Scholar
  9. 9.
    Jia, K. Z., Zhang, Y. P. and Li, Y. (2010). Systematic engineering of microorganisms to improve alcohol tolerance. Eng Life Sci 10, 422–429.CrossRefGoogle Scholar
  10. 10.
    Yan, Y. and Liao, J. C. (2009). Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36, 471–479.PubMedCrossRefGoogle Scholar
  11. 11.
    Mukhopadhyay, A., Redding, A. M., Rutherford, B. J. and Keasling, J. D. (2008). Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19, 228–234.PubMedCrossRefGoogle Scholar
  12. 12.
    Mao, S. M., Luo, Y. A. M., Zhang, T. R., Li, J. S., Bao, G. A. H., Zhu, Y., Chen, Z. G., Zhang, Y. P., Li, Y. and Ma, Y. H. (2010). Proteome reference map and comparative proteomic analysis between a wild type Clostridium acetobutylicum DSM 1731 and its mutant with enhanced butanol tolerance and butanol yield. J Proteome Res 9, 3046–3061.PubMedCrossRefGoogle Scholar
  13. 13.
    Elias, J. E. and Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207–214.PubMedCrossRefGoogle Scholar
  14. 14.
    Wilkins, M. R., Appel, R. D., Van Eyk, J. E., Chung, M. C. M., Gorg, A., Hecker, M., Huber, L. A., Langen, H., Link, A. J., Paik, Y. K., Patterson, S. D., Pennington, S. R., Rabilloud, T., Simpson, R. J., Weiss, W. and Dunn, M. J. (2006). Guidelines for the next 10 years of proteomics. Proteomics 6, 4–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Trauger, S. A., Kalisak, E., Kalisiak, J., Morita, H., Weinberg, M. V., Menon, A. L., Poole, F. L., Adams, M. W. W. and Siuzdak, G. (2008). Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile. J Proteome Res 7, 1027–1035.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao, B., Yeo, C. C. and Poh, C. L. (2005). Proteome investigation of the global regulatory role of sigma 54 in response to gentisate induction in Pseudomonas alcaligenes NCIMB 9867. Proteomics 5, 1868–1876.PubMedCrossRefGoogle Scholar
  17. 17.
    Dong, M., Yang, L. L., Williams, K., Fisher, S. J., Hall, S. C., Biggin, M. D., Jin, J. and Witkowska, H. E. (2008). A “Tagless” strategy for identification of stable protein complexes genome-wide by multidimensional orthogonal chromatographic separation and iTRAQ reagent tracking. J Proteome Res 7, 1836–1849.PubMedCrossRefGoogle Scholar
  18. 18.
    GEHealthcare (2004). 2-D Electrophoresis principles and methods. pp. 10–13.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shaoming Mao
    • 1
  • Kaizhi Jia
    • 1
  • Yanping Zhang
    • 1
  • Yin Li
    • 1
    Email author
  1. 1.Institute of MicrobiologyChinese Academy of SciencesBeijingChina

Personalised recommendations