Advertisement

Screening for Cellulases with Industrial Value and Their Use in Biomass Conversion

  • Julia Jüergensen
  • Nele Ilmberger
  • Wolfgang R. StreitEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 834)

Abstract

Cellulose is an easily renewable and highly occurring resource. To take advantage of this great potential, there is a constant need of new cellulose degrading enzymes. In industrial applications enzymes have to function under extreme conditions like high temperature, very acidic or basic pH and different solvents. Cellulases have a huge area of application, for example the textile and food industry as well as the generation of bioethanol as an alternative energy source. They have the ability to yield a great energetic potential, but there is still a lack of economical technologies to conquer the stability of the cellulose structure. Via metagenomic research and well-directed screening, it is possible to detect new cellulases, which are active under tough industrial conditions.

Key words

Cellulase Metagenome Renewable energy Biotechnology Screening 

References

  1. 1.
    Beguin, P. and Aubert, J.P. (1994) The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Lynd, L. R. and Zhang, Y. (2002) Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol. Bioeng. 77, 467–475.PubMedCrossRefGoogle Scholar
  3. 3.
    Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.-P. and Davies, G. (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. 92, 7090–7094.PubMedCrossRefGoogle Scholar
  4. 4.
    Bayer, E. A., Chanzy, H., Lamed, R., and Shoham, Y. (1998) Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. 8, 548–557.PubMedCrossRefGoogle Scholar
  5. 5.
    Kumar, R., Singh, S., and Singh, O. V. (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J. Ind. Microbiol. Biotechnol. 35, 377–391.PubMedCrossRefGoogle Scholar
  6. 6.
    Birsan, C., Johnson, P., Joshi, M., MacLeod, A., McIntosh, L., Monem, V., et al. (1998) Mechanisms of cellulases and xylanases. Biochem. Soc. Trans. 26, 156–160.PubMedGoogle Scholar
  7. 7.
    Hilden, L. and Johansson, G. (2004) Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol. Lett. 26, 1683–1693.PubMedCrossRefGoogle Scholar
  8. 8.
    Ando, S., Ishida, H., Kosugi, Y., and Ishikawa, K. (2002) Hyperthermostable endoglucanase from Pyrococcus horikoshii. Appl. Environ. Microbiol. 68, 430–433.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang, Y. H. and Lynd, L. R. (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88, 797–824.PubMedCrossRefGoogle Scholar
  10. 10.
    Bolam, D. N., Ciruela, A., McQueen-Mason, S., Simpson, P., Williamson, M. P., Rixon, J. E., et al. (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem. J. 331 (Pt 3), 775–781.PubMedGoogle Scholar
  11. 11.
    Carvalho, A. L., Goyal, A., Prates, J. A., Bolam, D. N., Gilbert, H. J., Pires, V. M., et al. (2004) The family 11 carbohydrate-binding module of Clostridium thermocellum Lic26A-Cel5E accommodates beta-1,4- and beta-1,3-1,4-mixed linked glucans at a single binding site. J. Biol. Chem. 279, 34785–34793.PubMedCrossRefGoogle Scholar
  12. 12.
    Coutinho, J. B., Gilkes, N. R., Kilburn, D. G., Warren, R. A. J., and R. C. Miller, J. (1993) The nature of the cellulose-binding domain effects the activities of a bacterial endoglucanase on different forms of cellulose. FEMS Microbiol. Lett. 113, 211–217.Google Scholar
  13. 13.
    Fontes, C. M., Clarke, J. H., Hazlewood, G. P., Fernandes, T. H., Gilbert, H. J., and Ferreira, L. M. (1997) Possible roles for a non-modular, thermostable and proteinase-resistant cellulase from the mesophilic aerobic soil bacterium Cellvibrio mixtus. Appl. Microbiol. Biotechnol. 48, 473–479.PubMedCrossRefGoogle Scholar
  14. 14.
    Klyosov, A. A. (1990). Trends in biochemistry and enzymology of cellulose degradation. Biochemistry. 29(47), 10577–10585.PubMedCrossRefGoogle Scholar
  15. 15.
    Schwarz, W. H. (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634–649.PubMedCrossRefGoogle Scholar
  16. 16.
    Shoham, Y., R. Lamed and E. A. Bayer (1999). The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol. 7(7), 275–281.PubMedCrossRefGoogle Scholar
  17. 17.
    Sanchez-Torres, J., Perez, P., and Santamaria, R. I. (1996) A cellulase gene from a new alkalophilic Bacillus sp. (strain N186-1). Its cloning, nucleotide sequence and expression in Escherichia coli. Appl. Microbiol. Biotechnol. 46, 149–155.PubMedCrossRefGoogle Scholar
  18. 18.
    Cazemier, A. E., Verdoes, J. C., Op den Camp, H. J., Hackstein, J. H., and van Ooyen, A. J. (1999) A beta-1,4-endoglucanase-encoding gene from Cellulomonas pachnodae. Appl. Microbiol. Biotechnol. 52, 232–239.PubMedCrossRefGoogle Scholar
  19. 19.
    Solingen, P., Meijer, D., Kleij, W., Barnett, C., Bolle, R., Power, S., et al. (2001) Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5, 333.PubMedCrossRefGoogle Scholar
  20. 20.
    Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–249.PubMedCrossRefGoogle Scholar
  21. 21.
    Streit, W. R. and Schmitz, R. A. (2004) Metagenomics - the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492–498.PubMedCrossRefGoogle Scholar
  22. 22.
    Daniel, R. (2004) The soil metagenome - a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15, 199–204.PubMedCrossRefGoogle Scholar
  23. 23.
    Schmeisser, C., Steele, H., and Streit, W. R. (2007) Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotechnol. 75, 955–962.PubMedCrossRefGoogle Scholar
  24. 24.
    Schmidt, T. M., DeLong, E. F., and Pace, N. R. (1991) Analysis of a marine picoplankton community by 16 S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378.PubMedGoogle Scholar
  25. 25.
    Ferrer, M., Golyshina, O. V., Chernikova, T. N., Khachane, A. N., Reyes-Duarte, D., Santos, V. A., et al. (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ. Microbiol. 7, 1996–2010.PubMedCrossRefGoogle Scholar
  26. 26.
    Ferrer, M., Golyshina, O. V., Plou, F. J., Timmis, K. N., and Golyshin, P. N. (2005) A novel alpha-glucosidase from the acidophilic archaeon Ferroplasma acidiphilum strain Y with high transglycosylation activity and an unusual catalytic nucleophile. Biochem. J. 391, 269–276.PubMedCrossRefGoogle Scholar
  27. 27.
    Beloqui, A., Pita, M., Polaina, J., Martinez-Arias, A., Golyshina, O. V., Zumarraga, M., et al. (2006) Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J. Biol. Chem. 281, 22933–22942.PubMedCrossRefGoogle Scholar
  28. 28.
    Voget, S., Leggewie, C., Uesbeck, A., Raasch, C., Jaeger, K.-E., and Streit, W. R. (2003) Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69, 6235–6242.PubMedCrossRefGoogle Scholar
  29. 29.
    Healy, F. G., Ray, R. M., Aldrich, H. C., Wilkie, A. C., Ingram, L. O., and Shanmugam, K. T. (1995) Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose. Appl. Microbiol. Biotechnol. 43, 667–674.PubMedCrossRefGoogle Scholar
  30. 30.
    Feng, Y., Duan, C. J., Pang, H., Mo, X. C., Wu, C. F., Yu, Y., et al. (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl. Microbiol. Biotechnol. 75, 319–328.PubMedCrossRefGoogle Scholar
  31. 31.
    Grant, S., Sorokin, D. Y., Grant, W. D., Jones, B. E., and Heaphy, S. (2004) A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. Extremophiles 8, 421–429.PubMedCrossRefGoogle Scholar
  32. 32.
    Rees, H. C., Grant, S., Jones, B., Grant, W. D., and Heaphy, S. (2003) Detecting cellulase and esterase enzyme activities encoded by novel genes present in environmental DNA libraries. Extremophiles 7, 415–421.PubMedCrossRefGoogle Scholar
  33. 33.
    Voget, S., Steele, H. L., and Streit, W. R. (2006) Characterization of a metagenome-derived halotolerant cellulase. J. Biotechnol. 126, 26–36.PubMedCrossRefGoogle Scholar
  34. 34.
    Pottkämper, J., Barthen, P., Ilmberger, N., Schwaneberg, U., Schenk, A., Schulte, M., et al. (2009) Applying metagenomics for the identification of bacterial cellulases that are stable in ionic liquids. Green Chemistry 11, 957–965.CrossRefGoogle Scholar
  35. 35.
    Guo, H., Feng, Y., Mo, X., Duan, C., Tang, J., and Feng, J. (2008) [Cloning and expression of a beta-glucosidase gene umcel3G from metagenome of buffalo rumen and characterization of the translated product]. Sheng Wu Gong Cheng Xue Bao 24, 232–238.PubMedGoogle Scholar
  36. 36.
    Pang, H., Zhang, P., Duan, C. J., Mo, X. C., Tang, J. L., and Feng, J. X. (2009) Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr. Microbiol. 58, 404–408.PubMedCrossRefGoogle Scholar
  37. 37.
    Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560–565.PubMedCrossRefGoogle Scholar
  38. 38.
    Brosius, J., Ullrich, A., Raker, M. A., Gray, A., Dull, T. J., Gutell, R. R., et al. (1981) Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid 6, 112–118.PubMedCrossRefGoogle Scholar
  39. 39.
    Kane, M. D., Poulsen, L. K., and Stahl, D. A. (1993) Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16 S rRNA sequences. Appl. Environ. Microbiol. 59, 682–686.PubMedGoogle Scholar
  40. 40.
    Wild, J., Hradecna, Z., Posfai, G., and Szybalski, W. (1996) A broad-host-range in vivo pop-out and amplification system for generating large quantities of 50- to 100-kb genomic fragments for direct DNA sequencing. Gene 179, 181–188.PubMedCrossRefGoogle Scholar
  41. 41.
    Sektas, M. and Szybalski, W. (1998) Tightly controlled two-stage expression vectors employing the Flp/FRT-mediated inversion of cloned genes. Mol. Biotechnol. 9, 17–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Teather, R. M. and Wood, P. J. (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 777–780.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Julia Jüergensen
    • 1
  • Nele Ilmberger
    • 1
  • Wolfgang R. Streit
    • 1
    Email author
  1. 1.Abteilung für Mikrobiologie und BiotechnologieUniversität HamburgHamburgGermany

Personalised recommendations