Skip to main content

Protein Dynamics by 15N Nuclear Magnetic Relaxation

  • Protocol
  • First Online:
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

Nitrogen-15 relaxation is the most ubiquitous source of information about protein (backbone) dynamics used by NMR spectroscopists. It provides the general characteristics of hydrodynamics as well as internal motions on subnanosecond, micro- and millisecond timescales of a biomolecule. Here, we present a full protocol to perform and analyze a series of experiments to measure the 15N longitudinal relaxation rate, the 15N transverse relaxation rate under an echo train or a single echo, the 15N–1H dipolar cross-relaxation rate, as well as the longitudinal and transverse cross-relaxation rates due to the cross-correlation of the nitrogen-15 chemical shift anisotropy and the dipolar coupling with the adjacent proton. These rates can be employed to carry out model-free analyses and can be used to quantify accurately the contribution of chemical exchange to transverse relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittermaier, A., and Kay, L. E. (2006) Review – New tools provide new insights in NMR studies of protein dynamics. Science 312, 224–228.

    Article  PubMed  CAS  Google Scholar 

  2. Palmer, A. G. (2004) NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640.

    Article  PubMed  CAS  Google Scholar 

  3. Massi, F., Wang, C. Y., and Palmer, A. G. (2006) Solution NMR and computer simulation studies of active site loop motion in triosephosphate isomerase. Biochemistry 45, 10787–10794.

    Article  PubMed  CAS  Google Scholar 

  4. Tjandra, N., Feller, S. E., Pastor, R. W., and Bax, A. (1995) Rotational Diffusion Anisotropy of Human Ubiquitin from N-15 NMR Relaxation. J. Am. Chem. Soc. 117, 12562–12566.

    Article  CAS  Google Scholar 

  5. Akke, M., Brüschweiler, R., and Palmer III, A. G. (1993) NMR Order Parameters and Free Energy: An Analytical Approach and Its Application to Cooperative Ca2+ Binding by Calbindin Dgk. J. Am. Chem. Soc. 115, 9832–9833.

    Article  CAS  Google Scholar 

  6. Frederick, K. K., Marlow, M. S., Valentine, K. G., and Wand, A. J. (2007) Conformational entropy in molecular recognition by proteins. Nature 448, 325–329.

    Article  PubMed  CAS  Google Scholar 

  7. Kuszewski, J., Gronenborn, A. M., and Clore, G. M. (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J. Am. Chem. Soc. 121, 2337–2338.

    Article  CAS  Google Scholar 

  8. Ryabov, Y., and Fushman, D. (2007) Structural Assembly of Multidomain Proteins and Protein Complexes Guided by the Overall Rotational Diffusion Tensor. J. Am. Chem. Soc. 129, 7894–7902.

    Article  PubMed  CAS  Google Scholar 

  9. Ryabov, Y. E., and Fushman, D. (2007) A model of interdomain mobility in a multidomain protein. J. Am. Chem. Soc. 129, 3315–3327.

    Article  PubMed  CAS  Google Scholar 

  10. Palmer, A. G., and Massi, F. (2006) Characte-rization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 106, 1700–1719.

    Article  PubMed  CAS  Google Scholar 

  11. Palmer, A. G. (2004) NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640.

    Article  PubMed  CAS  Google Scholar 

  12. Vallurupalli, P., Hansen, D. F., and Kay, L. E. (2008) Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 105, 11766–11771.

    Article  PubMed  CAS  Google Scholar 

  13. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone Dynamics of Proteins as Studied by N-15 Inverse Detected Heteronuclear NMR-Spectroscopy – Application to Staphylococcal Nuclease. Biochemistry 28, 8972–8979.

    Article  PubMed  CAS  Google Scholar 

  14. Kroenke, C. D., Loria, J. P., Lee, L. K., Rance, M., and Palmer III, A. G. (1998) Longitudinal and Transverse H-1-N-15 Dipolar N-15 Chemical Shift Anisotropy Relaxation Interference: Unambiguous Determination of Rotational Diffusion Tensors and Chemical Exchange Effects in Biological Macromolecules. J. Am. Chem. Soc. 120, 7905–7915.

    Article  CAS  Google Scholar 

  15. Pelupessy, P., Ferrage, F., and Bodenhausen, G. (2007) Accurate Measurement of Longitudinal Cross-Relaxation Rates in Nuclear Magnetic Resonance. J. Chem. Phys. 126, 134508.

    Article  PubMed  Google Scholar 

  16. Korzhnev, D. M., Billeter, M., Arseniev, A. S., and Orekhov, V. Y. (2001) NMR Studies of Brownian Tumbling and Internal Motions in Proteins. Prog. Nucl. Magn. Reson. Spectrosc. 38, 197–266.

    Article  CAS  Google Scholar 

  17. Luginbuhl, P., and Wuthrich, K. (2002) Semi-classical nuclear spin relaxation theory revisited for use with biological macromolecules. Prog. Nucl. Magn. Reson. Spectrosc. 40, 199–247.

    Article  CAS  Google Scholar 

  18. Nicholas, M. P., Eryilmaz, E., Ferrage, F., Cowburn, D., and Ghose, R. (2010) Nuclear spin relaxation in isotropic and anisotropic media, Prog. Nucl. Magn. Reson. Spectrosc. 57, 111–158.

    Article  CAS  Google Scholar 

  19. Cavanagh, J., Fairbrother, W. J., Palmer III, A. G., Rance, M., and Skelton, N. J. (2006) Protein NMR Spectroscopy: Principles and practice, Academic Press, San Diego.

    Google Scholar 

  20. Wang, L. C., Pang, Y. X., Holder, T., Brender, J. R., Kurochkin, A. V., and Zuiderweg, E. R. P. (2001) Functional dynamics in the active site of the ribonuclease binase. Proc. Natl. Acad. Sci. U.S.A. 98, 7684–7689.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, C. Y., and Palmer, A. G. (2003) Solution NMR methods for quantitative identification of chemical exchange in N-15-labeled proteins. Magn. Reson. Chem. 41, 866–876.

    Article  CAS  Google Scholar 

  22. Kempf, J. G., and Loria, J. P. (2004) Measurement of Intermediate Exchange Phenomena. Meth. Mol. Biol. 278, 185–231.

    PubMed  CAS  Google Scholar 

  23. Findeisen, M., Brand, T., and Berger, S. (2007) A H-1-NMR thermometer suitable for cryoprobes. Magn. Reson. Chem. 45, 175–178.

    Article  PubMed  CAS  Google Scholar 

  24. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a Multidimensional Spectral Processing System Based on UNIX Pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  25. Ferrage, F., Piserchio, A., Cowburn, D., and Ghose, R. (2008) On the measurement of N-15-{H-1} nuclear Overhauser effects. J. Magn. Reson. 192, 302–313.

    Article  PubMed  CAS  Google Scholar 

  26. Ferrage, F., Cowburn, D., and Ghose, R. (2009) Accurate Sampling of High-Frequency Motions in Proteins by Steady-State 15N-{1H} Nuclear Overhauser Effect Measurements in the Presence of Cross-Correlated Relaxation. J. Am. Chem. Soc. 131, 6048–6049.

    Article  PubMed  CAS  Google Scholar 

  27. Ferrage, F., Reichel, A., Battacharya, S., Cowburn, D., and Ghose, R. (2010) On the measurement of N-15-{H-1} nuclear Overhauser effects. 2. Effects of the saturation scheme and water signal suppression. J. Magn. Reson. 207, 294–303.

    Article  PubMed  CAS  Google Scholar 

  28. Pelupessy, P., Espallargas, G. M., and Bodenhausen, G. (2003) Symmetrical reconversion: measuring cross-correlation rates with enhanced accuracy. J. Magn. Reson. 161, 258–264.

    Article  PubMed  CAS  Google Scholar 

  29. Lipari, G., and Szabo, A. (1982) Model-Free Approach to the Interpretation of Nuclear Magnetic Resonance Relaxation In Macromo-lecules 1. Theory and Range of Validity. J. Am. Chem. Soc. 104, 4546–4559.

    Article  CAS  Google Scholar 

  30. Mandel, A. M., Akke, M., and Palmer III, A. G. (1995) Backbone Dynamics of Escherichia coli Ribonuclease HI : Correlations with Structure and Function in an Active Enzyme. J. Mol. Biol. 246, 144–163.

    Article  PubMed  CAS  Google Scholar 

  31. Cole, R., and Loria, J. P. (2003) FAST-Modelfree: A program for rapid automated analysis of solution NMR spin-relaxation data. J. Biomol. NMR 26, 203–13.

    Article  PubMed  CAS  Google Scholar 

  32. Dosset, P., Hus, J. C., Blackledge, M., and Marion, D. (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J. Biomol. NMR 16, 23–28.

    Article  PubMed  CAS  Google Scholar 

  33. Fushman, D., Cahill, S., and Cowburn, D. (1997) The main chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. J. Mol. Biol. 266, 173–194.

    Article  PubMed  CAS  Google Scholar 

  34. Butterwick, J. A., Loria, J. P., Astrof, N. S., Kroenke, C. D., Cole, R., Rance, M., and Palmer, A. G. (2004) Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes. J. Mol. Biol. 339, 855–871.

    Article  PubMed  CAS  Google Scholar 

  35. Sarkar, R., Moskau, D., Ferrage, F., Vasos, P. R., and Bodenhausen, G. (2008) Single or triple gradients? J. Magn. Reson. 193, 110–118.

    Article  PubMed  CAS  Google Scholar 

  36. Muhandiram, D. R., Yamazaki, T., Sykes, B. D., and Kay, L. E. (1995) Measurement of 2H T1ro Relaxation Times in Uniformly 13C-Labeled and Fractionally 2H-Labeled Proteins in Solution. J. Am. Chem. Soc. 117, 11536–11544.

    Article  CAS  Google Scholar 

  37. Bohlen, J. M., and Bodenhausen, G. (1993) Experimental Aspects of Chirp NMR-Spectroscopy. J. Magn. Reson. A 102, 293–301.

    Article  Google Scholar 

  38. Shaka, A. J., Barker, P. B., and Freeman, R. (1985) Computer-Optimized Decoupling Scheme for Wideband Applications and Low-Level Operation. J. Magn. Reson. 64, 547–552.

    CAS  Google Scholar 

  39. Emsley, L., and Bodenhausen, G. (1990) Gaussian Pulse Cascades-New Analytical Functions for Rectangular Selective Inversion and In-phase Excitation in NMR. Chem. Phys. Lett. 165, 469–476.

    Article  CAS  Google Scholar 

  40. Shaka, A. J., Keeler, J., Frenkiel, T., and Freeman, R. (1983) An Improved Sequence for Broad Band Decoupling – WALTZ-16. J. Magn. Reson. 52, 335–38.

    CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Geoffrey Bodenhausen, David Cowburn, Ranajeet Ghose, Arthur G. Palmer, and Philippe Pelupessy for their many contributions to my training, from hands-on practice to many insightful discussions. I thank Mikael Akke for the sample of Calbindin D9k and Kaushik Dutta for carefully reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Ferrage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ferrage, F. (2012). Protein Dynamics by 15N Nuclear Magnetic Relaxation. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics