Skip to main content

Isotope Labeling in Insect Cells

  • Protocol
  • First Online:
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

Recent years have seen remarkable progress in applying nuclear magnetic resonance (NMR) spectroscopy to proteins that have traditionally been difficult to study due to issues with folding, posttranslational modification, and expression levels or combinations thereof. In particular, insect cells have proved useful in allowing large quantities of isotope-labeled, functional proteins to be obtained and purified to homogeneity, allowing study of their structures and dynamics by using NMR. Here, we provide protocols that have proven successful in such endeavors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goto, N. K., and Kay, L. E. (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr. Opin. Struct. Biol. 10, 585–592.

    Google Scholar 

  2. Schein, C. H. (1991) Optimizing protein folding to the native state in bacteria. Curr Opin. Biotechnol. 2, 746–750.

    Google Scholar 

  3. Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V., Mal, T. K., Takayama, M. M., Xia, B., Phadtare, S., Ke, H., Acton, T., Montelione, G. T., Ikura, M., and Inouye, M. (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877–882.

    Google Scholar 

  4. Young, J. C., Agashe, V. R., Siegers, K., and Hartl, F. U. (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell. Biol. 5, 781–791.

    Google Scholar 

  5. Esposito, D., and Chatterjee, D. K. (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol. 17, 353–358.

    Google Scholar 

  6. Andersen, C. L., Matthey-Dupraz, A., Missiakas, D., and Raina, S. (1997) A new Escherichia coli gene, dsbG, encodes a periplasmic protein involved in disulphide bond formation, required for recycling DsbA/DsbB and DsbC redox proteins. Mol. Microbiol. 26, 121–132.

    Google Scholar 

  7. Bardwell, J. C. (1994) Building bridges: disulphide bond formation in the cell. Mol. Microbiol. 14, 199–205.

    Google Scholar 

  8. Pickford, A. R., and O’Leary, J. M. (2004) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol. Biol. 278, 17–33.

    Google Scholar 

  9. Hu, Y. C. (2008) Baculoviral vectors for gene delivery: a review. Curr. Gene Ther. 8, 54–65.

    Google Scholar 

  10. Kost, T. A., Condreay, J. P., Ames, R. S., Rees, S., and Romanos, M. A. (2007) Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Discov. Today 12, 396–403.

    Google Scholar 

  11. Hitchman, R. B., Possee, R. D., and King, L. A. (2009) Baculovirus expression systems for recombinant protein production in insect cells. Recent Pat. Biotechnol. 3, 46–54.

    Google Scholar 

  12. Lam, J. S., Huang, H., and Levitz, S. M. (2007) Effect of differential N-linked and O-linked mannosylation on recognition of fungal antigens by dendritic cells. PLoS One 2, e1009.

    Google Scholar 

  13. Dasgupta, S., Navarrete, A. M., Bayry, J., Delignat, S., Wootla, B., Andre, S., Christophe, O., Nascimbeni, M., Jacquemin, M., Martinez-Pomares, L., Geijtenbeek, T. B., Moris, A., Saint-Remy, J. M., Kazatchkine, M. D., Kaveri, S. V., and Lacroix-Desmazes, S. (2007) A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes. Proc. Natl. Acad. Sci. U.S.A 104, 8965–8970.

    Google Scholar 

  14. Moore, K. L. (2003) The biology and enzymology of protein tyrosine O-sulfation. J. Biol. Chem. 278, 24243–24246.

    Google Scholar 

  15. Daly, R., and Hearn, M. T. (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18, 119–138.

    Google Scholar 

  16. Hamilton, S. R., and Gerngross, T. U. (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr. Opin. Biotechnol. 18, 387–392.

    Google Scholar 

  17. Chisholm, V., Chen, C. Y., Simpson, N. J., and Hitzeman, R. A. (1990) Molecular and genetic approach to enhancing protein secretion. Methods Enzymol. 185, 471–482.

    Google Scholar 

  18. Dorner, A. J., and Kaufman, R. J. (1990) Analysis of synthesis, processing, and secretion of proteins expressed in mammalian cells. Methods Enzymol. 185, 577–596.

    Google Scholar 

  19. Moir, D. T. (1989) Yeast mutants with increased secretion efficiency. Biotechnology 13, 215–231.

    Google Scholar 

  20. Biemans, R., Thines, D., Rutgers, T., De Wilde, M., and Cabezon, T. (1991) The large surface protein of hepatitis B virus is retained in the yeast endoplasmic reticulum and provokes its unique enlargement. DNA Cell. Biol. 10, 191–200.

    Google Scholar 

  21. Gennaro, D. E., Hoffstein, S. T., Marks, G., Ramos, L., Oka, M. S., Reff, M. E., Hart, T. K., and Bugelski, P. J. (1991) Quantitative immunocytochemical staining for recombinant tissue-type plasminogen activator in transfected Chinese hamster ovary cells. Proc. Soc. Exp. Biol. Med. 198, 591–598.

    Google Scholar 

  22. Shuster, J. R. (1991) Gene expression in yeast: protein secretion. Curr. Opin. Biotechnol. 2, 685–690.

    Google Scholar 

  23. Mollaaghababa, R., Davidson, F. F., Kaiser, C., and Khorana, H. G. (1996) Structure and function in rhodopsin: expression of functional mammalian opsin in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A 93, 11482–11486.

    Google Scholar 

  24. Robinson, A. S., Hines, V., and Wittrup, K. D. (1994) Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Biotechnology (N Y) 12, 381–384.

    Google Scholar 

  25. Shusta, E. V., Raines, R. T., Pluckthun, A., and Wittrup, K. D. (1998) Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat. Biotechnol. 16, 773–777.

    Google Scholar 

  26. Butz, J. A., Niebauer, R. T., and Robinson, A. S. (2003) Co-expression of molecular chaperones does not improve the heterologous expression of mammalian G-protein coupled receptor expression in yeast. Biotechnol. Bioeng. 84, 292–304.

    Google Scholar 

  27. Durocher, Y., and Butler, M. (2009) Expression systems for therapeutic glycoprotein production. Curr. Opin. Biotechnol. 20, 700–707.

    Google Scholar 

  28. Jarvis, D. L. (2009) Baculovirus-insect cell expression systems. Methods Enzymol. 463, 191–222.

    Google Scholar 

  29. O´Reilly, D. R., Miller, L., Luckow, V.A. (1992) Baculovirus Expression Vectors - a Laboratory Manual. WH Freeman, New York.

    Google Scholar 

  30. van Regenmortel, M. H., Mayo, M. A., Fauquet, C. M., and Maniloff, J. (2000) Virus nomenclature: consensus versus chaos. Arch. Virol. 145, 2227–2232.

    Google Scholar 

  31. Hunt, I. (2005) From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr. Purif. 40, 1–22.

    Google Scholar 

  32. Carbonell, L. F., Klowden, M. J., and Miller, L. K. (1985) Baculovirus-mediated expression of bacterial genes in dipteran and mammalian cells. J. Virol. 56, 153–160.

    Google Scholar 

  33. Smith, G. E., Summers, M. D., and Fraser, M. J. (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Molecular Cell. Biol. 3, 2156–2165.

    Google Scholar 

  34. Ayres, M. D., Howard, S. C., Kuzio, J., Lopez-Ferber, M., and Possee, R. D. (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202, 586–605.

    Google Scholar 

  35. Kitts, P. A., and Possee, R. D. (1993) A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 14, 810–817.

    Google Scholar 

  36. Kost, T. A., Condreay, J. P., and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat. Biotechnol. 23, 567–575.

    Google Scholar 

  37. Friesen, P. D., and Nissen, M. S. (1990) Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome. Mol. Cell. Biol. 10, 3067–3077.

    Google Scholar 

  38. Harrison, R. L., and Jarvis, D. L. (2006) Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce “mammalianized” recombinant glycoproteins. Adv. Virus Res. 68, 159–191.

    Google Scholar 

  39. DeLange, F., Klaassen, C. H., Wallace-Williams, S. E., Bovee-Geurts, P. H., Liu, X. M., DeGrip, W. J., and Rothschild, K. J. (1998) Tyrosine structural changes detected during the photoactivation of rhodopsin. J. Biol. Chem. 273, 23735–23739.

    Google Scholar 

  40. Creemers, A. F., Klaassen, C. H., Bovee-Geurts, P. H., Kelle, R., Kragl, U., Raap, J., de Grip, W. J., Lugtenburg, J., and de Groot, H. J. (1999) Solid state 15N NMR evidence for a complex Schiff base counterion in the visual G-protein-coupled receptor rhodopsin. Biochemistry 38, 7195–7199.

    Google Scholar 

  41. Bellizzi, J. J., Widom, J., Kemp, C. W., and Clardy, J. (1999) Producing selenomethionine-labeled proteins with a baculovirus expression vector system. Structure 7, R263-267.

    Google Scholar 

  42. Bruggert, M., Rehm, T., Shanker, S., Georgescu, J., and Holak, T. A. (2003) A novel medium for expression of proteins selectively labeled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cells. J. Biomol. NMR 25, 335–348.

    Google Scholar 

  43. Strauss, A., Bitsch, F., Cutting, B., Fendrich, G., Graff, P., Liebetanz, J., Zurini, M., and Jahnke, W. (2003) Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. J. Biomol. NMR 26, 367–372.

    Google Scholar 

  44. Strauss, A., Bitsch, F., Fendrich, G., Graff, P., Knecht, R., Meyhack, B., and Jahnke, W. (2005) Efficient uniform isotope labeling of Abl kinase expressed in Baculovirus-infected insect cells. J. Biomol. NMR 31, 343–349.

    Google Scholar 

  45. Betz, M., Vogtherr, M., Schieborr, U., Elshorst, B., Grimme, S., Pescatore, B., Langer, T., Saxena, K., and Schwalbe, H. (2008) Chemical Biology of Kinases Studied by NMR Spectroscopy, In Chemical Biology (Prof. Dr. Stuart L. Schreiber, P. D. T. M. K. P. D. G., Ed.), pp 852–890.

    Google Scholar 

  46. Stockman, B. J., Kothe, M., Kohls, D., Weibley, L., Connolly, B. J., Sheils, A. L., Cao, Q., Cheng, A. C., Yang, L., Kamath, A. V., Ding, Y. H., and Charlton, M. E. (2009) Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H-15N TROSY experiments. Chem. Biol. Drug Des. 73, 179–188.

    Google Scholar 

  47. Jahnke, W., Grotzfeld, R. M., Pelle, X., Strauss, A., Fendrich, G., Cowan-Jacob, S. W., Cotesta, S., Fabbro, D., Furet, P., Mestan, J., and Marzinzik, A. L. (2010) Binding or bending: distinction of allosteric Abl kinase agonists from antagonists by an NMR-based conformational assay. J. Am. Chem. Soc. 132, 7043–7048.

    Google Scholar 

  48. Vajpai, N., Strauss, A., Fendrich, G., Cowan-Jacob, S. W., Manley, P. W., Jahnke, W., and Grzesiek, S. (2008) Backbone NMR resonance assignment of the Abelson kinase domain in complex with imatinib. Biomol. NMR Assign. 2, 41–42.

    Google Scholar 

  49. Maniatis, T. (1982) Molecular cloning : a laboratory manual / T. Maniatis, E.F. Fritsch, J. Sambrook, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  50. Marley, J., Lu, M., and Bracken, C. (2001) A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Schwalbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Saxena, K., Dutta, A., Klein-Seetharaman, J., Schwalbe, H. (2012). Isotope Labeling in Insect Cells. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics