Skip to main content

Determining Protein Dynamics from 15N Relaxation Data by Using DYNAMICS

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

Motions are essential for protein function, and knowledge of protein dynamics is a key to our understanding the mechanisms underlying protein folding and stability, ligand recognition, allostery, and catalysis. In the last two decades, NMR relaxation measurements have become a powerful tool for characterizing backbone and side chain dynamics in complex biological macromolecules such as proteins and nucleic acids. Accurate analysis of the experimental data in terms of motional parameters is an essential prerequisite for developing physical models of motions to paint an adequate picture of protein dynamics. Here, I describe in detail how to use the software package DYNAMICS that was developed for accurate characterization of the overall tumbling and local dynamics in a protein from nuclear spin-relaxation rates measured by NMR. Step-by-step instructions are provided and illustrated through an analysis of 15N relaxation data for protein G.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Palmer, A. G., 3 rd. (2004) NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 104, 3623–3640.

    Article  PubMed  CAS  Google Scholar 

  2. Sheppard, D., Sprangers, R., and Tugarinov, V. (2010) Experimental approaches for NMR studies of side-chain dynamics in high-molecular-weight proteins. Prog. Nucl. Magn. Reson. Spectrosc. 56, 1–45.

    Article  PubMed  CAS  Google Scholar 

  3. Godoy-Ruiz, R., Guo, C., and Tugarinov, V. (2010) Alanine methyl groups as NMR probes of molecular structure and dynamics in high-molecular-weight proteins. J. Am. Chem. Soc. 132, 18340–18350.

    Article  PubMed  CAS  Google Scholar 

  4. Cavanagh, J., Fairbrother, W. J., III, A. J. P., and Skelton, N. J. (1996) Protein NMR Spectroscopy, Academic Press, San Diego.

    Google Scholar 

  5. Fushman, D., and Cowburn, D. (1999) The effect of noncollinearity of 15  N-1  H dipolar and 15  N CSA tensors and rotational anisotropy on 15  N relaxation rates, CSA/DD cross correlation, and TROSY. J. Biomol. NMR 13, 139–147.

    Article  PubMed  CAS  Google Scholar 

  6. Fushman, D., Ohlenschlager, O., and Rüterjans, H. (1994) Determination of the backbone mobility of ribonuclease T1 and its 2’GMP complex using molecular dynamics simulations and NMR relaxation data. J. Biomol. Struct. Dyn. 11, 1377–1402.

    PubMed  CAS  Google Scholar 

  7. Pfeiffer, S., Fushman, D., and Cowburn, D. (2001) Simulated and NMR derived backbone dynamics of a protein with significant flexibility: A comparison of spectral densities for the  <  beta  >  ARK PH domain. J. Am. Chem. Soc. 123, 3021–3036.

    Article  CAS  Google Scholar 

  8. Maragakis, P., Lindorff-Larsen, K., Eastwood, M. P., Dror, R. O., Klepeis, J. L., Arkin, I. T., Jensen, M. O., Xu, H., Trbovic, N., Friesner, R. A., Palmer, A. G., and Shaw, D. E. (2008) Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J. Phys. Chem. B 112, 6155–6158.

    Article  PubMed  CAS  Google Scholar 

  9. Fushman, D., and Cowburn, D. (2001) Nuclear magnetic resonance relaxation in determination of residue-specific 15  N chemical shift tensors in proteins in solution: protein dynamics, structure, and applications of transverse relaxation optimized spectroscopy, in Methods in Enzymology (James, T., Schmitz, U., and Doetsch, V., Eds.), 339, 109–126.

    Google Scholar 

  10. Lipari, G., and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. J. Am. Chem. Soc. 104, 4559–4570.

    Article  CAS  Google Scholar 

  11. Lipari, G., and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity, J. Am. Chem. Soc. 104, 4546–4559.

    Article  CAS  Google Scholar 

  12. Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., and Gronenborn, A. M. (1990) Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc 112, 4989–4936.

    Article  CAS  Google Scholar 

  13. Woessner, D. (1962) Nuclear spin relaxaion in ellipsoids undergoing rotational brownian motion. J.Chem.Phys. 37, 647–654.

    Article  CAS  Google Scholar 

  14. Favro, D. L. (1960) Theory of the Rotational Brownian Motion of a Free Rigid Body. Phys. Rev. 119, 53–62.

    Article  Google Scholar 

  15. Ryabov, Y. E., and Fushman, D. (2007) A Model of Interdomain Mobility in a Multidomain Protein. J. Am. Chem. Soc. 129, 3315–3327.

    Article  PubMed  CAS  Google Scholar 

  16. Tjandra, N., Feller, S. E., Pastor, R. W., and Bax, A. (1995) Rotational diffusion anisotropy of human ubiquitin from 15  N NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566.

    Article  CAS  Google Scholar 

  17. Palmer, A. G., 3 rd, Grey, M. J., and Wang, C. (2005) Solution NMR spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems. Methods Enzymol. 394, 430–465.

    Article  PubMed  CAS  Google Scholar 

  18. Fushman, D., Cahill, S., and Cowburn, D. (1997) The main chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: Analysis of 15  N relaxation with monomer/dimer equilibration. J. Mol. Biol. 266, 173–194.

    Article  PubMed  CAS  Google Scholar 

  19. Hall, J. B., and Fushman, D. (2006) Variability of the 15  N Chemical Shielding Tensors in the B3 Domain of Protein G from 15  N Relaxation Measurements at Several Fields. Implications for Backbone Order Parameters. J.Am.Chem.Soc. 128, 7855–7870.

    CAS  Google Scholar 

  20. Fushman, D., and Cowburn, D. (1998) Studying protein dynamics with NMR relaxation, in Structure, Motion, Interaction and Expression of Biological Macromolecules (Sarma, R., and Sarma, M., Eds.), pp 63–77, Adenine Press, Albany, NY.

    Google Scholar 

  21. Blackledge, M., Cordier, F., Dosset, P., and Marion, D. (1998) Precision and uncertainty in the characterization of anisotropic rotational diffusion by 15  N relaxation. J.Am.Chem.Soc. 120, 4538–4539.

    Article  CAS  Google Scholar 

  22. Fushman, D., Xu, R., and Cowburn, D. (1999) Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15  N NMR relaxation in Abl SH(32). Biochemistry 38, 10225–10230.

    Article  PubMed  CAS  Google Scholar 

  23. Fushman, D., Ghose, R., and Cowburn, D. (2000) The effect of finite sampling on the determination of orientational properties: A theoretical treatment with application to interatomic vectors in proteins. J. Am. Chem. Soc. 122, 10640–10649.

    Article  CAS  Google Scholar 

  24. Dosset, P., Hus, J. C., Blackledge, M., and Marion, D. (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J. Biomol. NMR 16, 23–28.

    Article  PubMed  CAS  Google Scholar 

  25. Ghose, R., Fushman, D., and Cowburn, D. (2001) Determination of the Rotational Diffusion Tensor of Macromolecules in Solution from NMR Relaxation Data with a Combination of Exact and Approximate Methods - Application to the Determination of Interdomain Orientation in Multidomain Proteins. J. Magn. Reson. 149, 214–217.

    Article  Google Scholar 

  26. Walker, O., Varadan, R., and Fushman, D. (2004) Efficient and accurate determination of the overall rotational diffusion tensor of a molecule from 15  N relaxation data using computer program ROTDIF. J. Magn. Reson. 168, 336–345.

    Article  PubMed  CAS  Google Scholar 

  27. Fushman, D., Varadan, R., Assfalg, M., and Walker, O. (2004) Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements. Prog. NMR Spectros. 44, 189–214.

    Article  CAS  Google Scholar 

  28. Hall, J. B., Walker, O., and Fushman, D. (2004) Characterization of the overall rotational ­diffusion of a protein from 15  N relaxation ­measurements and hydrodynamic calculations, in Protein NMR techniques (Methods in Molecular Biology) (A.K.Downing, Ed.), pp 139–160, Humana Press Inc.

    Google Scholar 

  29. Fushman, D., and Cowburn, D. (2002) Characterization of Inter-Domain Orientations in Solution Using the NMR Relaxation Approach, in Protein NMR for the Millenium (Biological Magnetic Resonance Vol 20) (N. R. Krishna, L. B., Ed.), pp 53–78, Kluwer.

    Google Scholar 

  30. Fushman, D. (2002) Determination of protein dynamics using 15  N relaxation measurements, in BioNMR in drug research (O.Zerbe, Ed.), pp 283–308, Wiley-VCH.

    Google Scholar 

  31. Mandel, A. M., Akke, M., and Palmer, A. G. I. (1995) Backbone dynamics of E. coli Ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163.

    Article  PubMed  CAS  Google Scholar 

  32. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992) Numerical Recipes in C, Cambridge University Press, NY.

    Google Scholar 

  33. Fushman, D., Weisemann, R., Thüring, H., and Rüterjans, H. (1994) Backbone dynamics of ribonuclease T1 and its complex with 2’GMP studied by two-dimensional heteronuclear NMR spectroscopy. J. Biomol. NMR 4, 61–78.

    Article  CAS  Google Scholar 

  34. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone dynamics of proteins as studies by N15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979.

    Article  PubMed  CAS  Google Scholar 

  35. Hall, J. B., and Fushman, D. (2003) Characterization of the overall and local dynamics of a protein with intermediate rotational anisotropy: Differentiating between conformational exchange and anisotropic diffusion in the B3 domain of protein G. J. Biomol. NMR 27, 261–275.

    Article  PubMed  CAS  Google Scholar 

  36. Hall, J. B., and Fushman, D. (2003) Direct measurement of the transverse and longitudinal 15  N chemical shift anisotropy-dipolar cross-correlation rate constants using 1  H-coupled HSQC spectra. Mag. Res. in Chemistry 41, 837–842.

    Article  CAS  Google Scholar 

  37. Ryabov, Y. E., Geraghty, C., Varshney, A., and Fushman, D. (2006) An efficient computational method for predicting rotational diffusion tensors of globular proteins using an ellipsoid representation. J. Am. Chem. Soc. 128, 15432–15444.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The development of DYNAMICS program was supported by NIH grant GM 065334. My work on this chapter has led to several modifications of the program, which hopefully made it user-friendlier, and I would like to thank the editors, Alex Shekhtman and David Burz, for being so patient with me during this process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fushman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fushman, D. (2012). Determining Protein Dynamics from 15N Relaxation Data by Using DYNAMICS. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics