Skip to main content

Fast Protein Backbone NMR Resonance Assignment Using the BATCH Strategy

  • Protocol
  • First Online:
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

Probing protein structure, dynamics, and interaction surfaces by NMR requires initial backbone resonance assignment. The protocol for this step has been progressively developed in the last 15 years to provide robust assignments. However, even in the case of favorable conditions (high field magnets and cryogenically cooled probes, small globular proteins, high sample concentration), the assignment step generally takes several days of data collection and analysis, thus precluding studies of unstable proteins and limiting high-throughput applications. Recently, we have introduced the BATCH strategy for fast protein backbone resonance assignment. BATCH benefits from the combination of several tools (BEST/ASCOM/Targeted-Sampling/COBRA/HADAMAC) for time-optimized and highly automated NMR data acquisition, processing, and analysis. In this chapter, we discuss the individual steps of the BATCH method and describe its practical implementation to obtain the backbone resonance assignment of small globular proteins in a few hours of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jaravine, V. A., Zhuravleva, A. V., Permi, P., Ibraghimov, I., and Orekhov, V. Y. (2008) Hyperdimensional NMR spectroscopy with nonlinear sampling. J. Am. Chem. Soc. 130, 3927–3936.

    Article  PubMed  CAS  Google Scholar 

  2. Hiller, S., Fiorito, F., Wuthrich, K., and Wider, G. (2005) Automated projection spectroscopy (APSY). Proc. Natl. Acad. Sci. USA 102, 10876–10881.

    Article  PubMed  CAS  Google Scholar 

  3. Lescop, E., and Brutscher, B. (2009) Highly automated protein backbone resonance assignment within a few hours: the “BATCH” strategy and software package. J. Biomol. NMR 44, 43–57.

    Article  PubMed  CAS  Google Scholar 

  4. Lescop, E., Rasia, R., and Brutscher, B. (2008) Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. J. Am. Chem. Soc. 130, 5014–5015.

    Article  PubMed  CAS  Google Scholar 

  5. Lescop, E., and Brutscher, B. (2007) Hyperdimensional protein NMR spectroscopy in peptide-sequence space. J. Am. Chem. Soc. 129, 11916–11917.

    Article  PubMed  CAS  Google Scholar 

  6. Lescop, E., Schanda, P., and Brutscher, B. (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J. Magn. Reson. 187, 163–169.

    Article  PubMed  CAS  Google Scholar 

  7. Schanda, P., Van Melckebeke, H., and Brutscher, B. (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J. Am. Chem. Soc. 128, 9042–9043.

    Article  PubMed  CAS  Google Scholar 

  8. Lescop, E., Schanda, P., Rasia, R., and Brutscher, B. (2007) Automated spectral compression for fast multidimensional NMR and increased time resolution in real-time NMR spectroscopy. J. Am. Chem. Soc. 129, 2756–2757.

    Article  PubMed  CAS  Google Scholar 

  9. Deschamps, M., and Campbell, I. D. (2006) Cooling overall spin temperature: protein NMR experiments optimized for longitudinal relaxation effects. J. Magn. Reson. 178, 206–211.

    Article  PubMed  CAS  Google Scholar 

  10. Pervushin, K., Vogeli, B., and Eletsky, A. (2002) Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. J. Am. Chem. Soc. 124, 12898–12902.

    Article  PubMed  CAS  Google Scholar 

  11. Diercks, T., Daniels, M., and Kaptein, R. (2005) Extended flip-back schemes for sensitivity enhancement in multidimensional HSQC-type out-and-back experiments. J. Biomol. NMR 33, 243–259.

    Article  PubMed  CAS  Google Scholar 

  12. Kupce, E., and Freeman, R. (1993) Polychromatic Selective Pulses. J. Magn. Reson. 102A, 122–126.

    Google Scholar 

  13. Geen, H., and Freeman, R. (1991) Band-selective radiofrequency pulses. J. Magn. Reson. 93, 93–141.

    Google Scholar 

  14. Smith, M. A., Hu, H., and Shaka, A. J. (2001) Improved Broadband Inversion Performance for NMR in Liquids. J. Magn. Reson. 151, 269–283.

    Article  CAS  Google Scholar 

  15. Brutscher, B. (2002) Intraresidue HNCA and COHNCA experiments for protein backbone resonance assignment. J. Magn. Reson. 156, 155–159.

    Article  PubMed  CAS  Google Scholar 

  16. Blevins, R. A., and Johnson, B. A. (1994) NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614.

    Article  Google Scholar 

  17. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral ­processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  18. Jung, Y. S., and Zweckstetter, M. (2004) Mars – robust automatic backbone assignment of proteins. J. Biomol. NMR 30, 11–23.

    Article  PubMed  CAS  Google Scholar 

  19. Slupsky, C. M., Boyko, R. F., Booth, V. K., and Sykes, B. D. (2003) Smartnotebook: a semi-automated approach to protein sequential NMR resonance assignments. J. Biomol. NMR 27, 313–321.

    Article  PubMed  CAS  Google Scholar 

  20. Rasia, R. M., Mateos, J., Bologna, N. G., Burdisso, P., Imbert, L., Palatnik, J. F., and Boisbouvier, J. (2010) Structure and RNA interactions of the plant MicroRNA processing-associated protein HYL1. Biochemistry 49, 8237–8239.

    Article  PubMed  CAS  Google Scholar 

  21. Wishart, D. S., and Sykes, B. D. (1994) The 13  C chemical-shift index: a simple method for the identification of protein secondary structure using 13  C chemical-shift data. J. Biomol. NMR 4, 171–180.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks to Rodolfo Rasia and Jérôme Boisbouvier (IBS, Grenoble) for allowing us to use their NMR data on Hyl1 to illustrate this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewen Lescop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Brutscher, B., Lescop, E. (2012). Fast Protein Backbone NMR Resonance Assignment Using the BATCH Strategy. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics