Skip to main content

Solid-State NMR Spectroscopy of Protein Complexes

  • Protocol
  • First Online:
Protein NMR Techniques

Abstract

Protein–protein interactions are vital for many biological processes. These interactions often result in the formation of protein assemblies that are large in size, insoluble, and difficult to crystallize, and therefore are challenging to study by structure biology techniques, such as single crystal X-ray diffraction and solution NMR spectroscopy. Solid-state NMR (SSNMR) spectroscopy is emerging as a promising technique for studies of such protein assemblies because it is not limited by molecular size, solubility, or lack of long-range order. In the past several years, we have applied magic angle spinning SSNMR-based methods to study several protein complexes. In this chapter, we discuss the general SSNMR methodologies employed for structural and dynamics analyses of protein complexes with specific examples from our work on thioredoxin reassemblies, HIV-1 capsid protein assemblies, and microtubule-associated protein assemblies. We present protocols for sample preparation and characterization, pulse sequences, SSNMR spectra collection, and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yool A. J. (2007) Aquaporins: Multiple roles in the central nervous system. Neuroscientist 13, 470–485.

    Article  PubMed  CAS  Google Scholar 

  2. Vale R. D. (2003) The molecular motor toolbox for intracellular transport. Cell 112, 467–480.

    Article  PubMed  CAS  Google Scholar 

  3. Grunewald K. & Cyrklaff M. (2006) Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr. Opin. Microbiol. 9, 437–442.

    Article  PubMed  Google Scholar 

  4. Klein K. C., Reed J. C., & Lingappa J. R. (2007) Intracellular destinies: Degradation, targeting, assembly, and endocytosis of HIV gag. AIDS Rev. 9, 150–161.

    PubMed  Google Scholar 

  5. Uysal H., et al. (2010) Antibodies to citrullinated proteins: molecular interactions and arthritogenicity. Immunol. Rev. 233, 9–33.

    Article  PubMed  CAS  Google Scholar 

  6. Goldbourt A., Gross B. J., Day L. A., & McDermott A. E. (2007) Filamentous phage studied by magic-angle spinning NMR: Resonance assignment and secondary structure of the coat protein in Pf1. J. Am. Chem. Soc. 129, 2338–2344.

    Article  PubMed  CAS  Google Scholar 

  7. Hong M. (2007) Structure, topology, and dynamics of membrane peptides and proteins from solid-state NMR Spectroscopy. J. Phys. Chem. B 111, 10340–10351.

    Article  PubMed  CAS  Google Scholar 

  8. Lange A., et al. (2006) Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440, 959–962.

    Article  PubMed  CAS  Google Scholar 

  9. Porcelli F., Buck-Koehntop B. A., Thennarasu S., Ramamoorthy A., & Veglia G. (2006) Structures of the dimeric and monomeric variants of magainin antimicrobial peptides (MSI-78 and MSI-594) in micelles and bilayers, determined by NMR spectroscopy. Biochemistry 45, 5793–5799.

    Article  PubMed  CAS  Google Scholar 

  10. Zheng Z., Yang R., Bodner M. L., & Weliky D. P. (2006) Conformational flexibility and strand arrangements of the membrane-associated HIV fusion peptide trimer probed by solid-state NMR spectroscopy. Biochemistry 45, 12960–12975.

    Article  PubMed  CAS  Google Scholar 

  11. Lewandowski J. R., De Paepe G., & Griffin R. G. (2007) Proton assisted insensitive nuclei cross polarization. J. Am. Chem. Soc. 129, 728–729.

    Article  PubMed  CAS  Google Scholar 

  12. Chimon S. & Ishii Y. (2005) Capturing intermediate structures of Alzheimer’s beta-amyloid, A beta(1–40), by solid-state NMR spectroscopy. J. Am. Chem. Soc. 127, 13472–13473.

    Article  PubMed  CAS  Google Scholar 

  13. Jaroniec C. P., et al. (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl. Acad. Sci. USA 101, 711–716.

    Article  PubMed  CAS  Google Scholar 

  14. Petkova A. T., et al. (2004) Solid state NMR reveals a pH-dependent antiparallel beta-sheet registry in fibrils formed by a beta-amyloid peptide. J. Mol. Biol. 335, 247–260.

    Article  PubMed  CAS  Google Scholar 

  15. Shewmaker F., Wickner R. B., & Tycko R. (2006) Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc. Natl. Acad. Sci. USA 103, 19754–19759.

    Article  PubMed  CAS  Google Scholar 

  16. Siemer A. B., et al. (2006) Observation of highly flexible residues in amyloid fibrils of the HET-s prion. J. Am. Chem. Soc. 128, 13224–13228.

    Article  PubMed  CAS  Google Scholar 

  17. Tycko R. (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q. Rev. Biophys. 39, 1–55.

    Article  PubMed  CAS  Google Scholar 

  18. Han Y., et al. (2010) Solid-State NMR Studies of HIV-1 Capsid Protein Assemblies. J. Am. Chem. Soc. 132, 1976–1987.

    Article  PubMed  CAS  Google Scholar 

  19. Sun S. J., Siglin A., Williams J. C., & Polenova T. (2009) Solid-State and Solution NMR Studies of the CAP-Gly Domain of Mammalian Dynactin and Its Interaction with Microtubules. J. Am. Chem. Soc. 131, 10113–10126.

    Article  PubMed  CAS  Google Scholar 

  20. Etzkorn M., Bockmann A., Lange A., & Baldus M. (2004) Probing molecular interfaces using 2D magic-angle-spinning NMR on protein mixtures with different uniform labeling. J. Am. Chem. Soc. 126, 14746–14751.

    Article  PubMed  CAS  Google Scholar 

  21. Marulanda D., et al. (2004) Magic angle spinning solid-state NMR spectroscopy for structural studies of protein interfaces. Resonance assignments of differentially enriched Escherichia coli thioredoxin reassembled by fragment complementation. J. Am. Chem. Soc. 126, 16608–16620.

    CAS  Google Scholar 

  22. Yang J., et al. (2007) Magic angle spinning NMR spectroscopy of thioredoxin reassemblies. Magn. Reson. Chem. 45, S73-S83.

    Article  PubMed  CAS  Google Scholar 

  23. Castellani F., et al. (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420, 98–102.

    Article  PubMed  CAS  Google Scholar 

  24. Hong M. & Jakes K. (1999) Selective and extensive 13  C labeling of a membrane protein for solid-state NMR investigations. J. Biomol. NMR 14, 71–74.

    Article  PubMed  CAS  Google Scholar 

  25. Muchmore D. C., McIntosh L. P., Russell C. B., Anderson D. E., & Dahlquist F. W. (1989) Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol. 177, 44–73.

    Article  PubMed  CAS  Google Scholar 

  26. Marulanda D., Tasayco M. L., Cataldi M., Arriaran V., & Polenova T. (2005) Resonance assignments and secondary structure analysis of E. coli thioredoxin by magic angle spinning solid-state NMR spectroscopy. J. Phys. Chem. B 109, 18135–18145.

    Article  PubMed  CAS  Google Scholar 

  27. Yang J., Tasayco M. L., & Polenova T. (2008) Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies. J. Am. Chem. Soc. 130, 5798–5807.

    Article  PubMed  CAS  Google Scholar 

  28. Yang J., Tasayco M. L., & Polenova T. (2009) Dynamics of Reassembled Thioredoxin Studied by Magic Angle Spinning NMR: Snapshots from Different Time Scales. J. Am. Chem. Soc. 131, 13690–13702.

    Article  PubMed  CAS  Google Scholar 

  29. Franks W., Kloepper K., Wylie B., & Rienstra C. (2007) Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins. J. Biomol. NMR 39, 107–131.

    Article  PubMed  CAS  Google Scholar 

  30. Andrew E. R., Bradbury A., & Eades R. G. (1958) Nuclear Magnetic Resonance Spectra from a Crystal Rotated at High Speed. Nature 182, 1659–1659.

    Article  CAS  Google Scholar 

  31. Schaefer J., McKay R. A., & Stejskal E. O. (1979) Double-cross-polarization NMR of solids. J. Magn. Reson. 34, 443–447.

    CAS  Google Scholar 

  32. Baldus M., Petkova A. T., Herzfeld J., & Griffin R. G. (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol. Phys. 95, 1197–1207.

    Article  CAS  Google Scholar 

  33. Szeverenyi N. M., Sullivan M. J., & Maciel G. E. (1982) Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning. J. Magn. Reson. 47, 462–475.

    CAS  Google Scholar 

  34. Takegoshi K., Nakamura S., & Terao T. (2001) 13C-1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637.

    Article  CAS  Google Scholar 

  35. Verel R., Baldus M., Ernst M., & Meier B. H. (1998) A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques. Chem. Phys. Lett. 287, 421–428.

    Article  CAS  Google Scholar 

  36. Bennett A. E., et al. (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J. Chem. Phys. 108, 9463–9479.

    Article  CAS  Google Scholar 

  37. Hohwy M., Rienstra C. M., Jaroniec C. P., & Griffin R. G. (1999) Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy. J. Chem. Phys. 110, 7983–7992.

    Article  CAS  Google Scholar 

  38. Ernst M., Detken A., Bockmann A., & Meier B. H. (2003) NMR spectra of a microcrystalline protein at 30 kHz MAS. J. Am. Chem. Soc. 125, 15807–15810.

    Article  PubMed  CAS  Google Scholar 

  39. Chen L. L., et al. (2007) J-based 2D homonuclear and heteronuclear correlation in solid-state proteins. Magn. Reson. Chem. 45, S84-S92.

    Article  CAS  Google Scholar 

  40. Chen L., et al. (2006) Constant-Time Through-Bond 13C Correlation Spectroscopy for Assigning Protein Resonances with Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 128, 9992–9993.

    Article  PubMed  CAS  Google Scholar 

  41. Chen L., et al. (2007) Backbone assignments in solid-state proteins using J-based 3D Heteronuclear correlation spectroscopy. J. Am. Chem. Soc. 129, 10650–10651.

    Article  PubMed  CAS  Google Scholar 

  42. Griffin R. G. (1998) Dipolar recoupling in MAS spectra of biological solids. Nat. Struct. Biol. 5 Suppl, 508–512.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao X., Edén M., & Levitt M. H. (2001) Recoupling of heteronuclear dipolar interactions in solid-state NMR using symmetry-based pulse sequences. Chem. Phys. Lett. 342, 353–361.

    Article  CAS  Google Scholar 

  44. Ladizhansky V. (2009) Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins. Solid State Nucl. Magn. Reson. 36, 119–128.

    Article  PubMed  CAS  Google Scholar 

  45. Balayssac S. p., Bertini I., Lelli M., Luchinat C., & Maletta M. (2007) Paramagnetic Ions Provide Structural Restraints in Solid-State NMR of Proteins. J. Am. Chem. Soc. 129, 2218–2219.

    Article  PubMed  CAS  Google Scholar 

  46. Nadaud P. S., Helmus J. J., Kall S. L., & Jaroniec C. P. (2009) Paramagnetic Ions Enable Tuning of Nuclear Relaxation Rates and Provide Long-Range Structural Restraints in Solid-State NMR of Proteins. J. Am. Chem. Soc. 131, 8108–8120.

    Article  PubMed  CAS  Google Scholar 

  47. Xu X., et al. (2009) Intermolecular dynamics studied by paramagnetic tagging. J. Biomol. NMR 43, 247–254.

    Article  PubMed  CAS  Google Scholar 

  48. Lian L.-Y. & Middleton D. A. (2001) Labelling approaches for protein structural studies by solution-state and solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 39, 171–190.

    Article  CAS  Google Scholar 

  49. Schubert M., Manolikas T., Rogowski M., & Meier B. H. (2006) Solid-state NMR spectroscopy of 10% 13C labeled ubiquitin: spectral simplification and stereospecific assignment of isopropyl groups. J. Biomol. NMR 35, 167–173.

    Article  PubMed  CAS  Google Scholar 

  50. Delaglio F., et al. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  51. Mobli M., Maciejewski M. W., Gryk M. R., & Hoch J. C. (2007) Automatic maximum entropy spectral reconstruction in NMR. J. Biomol. NMR 39, 133–139.

    Article  PubMed  CAS  Google Scholar 

  52. Johnson B. A. & Blevins R. A. (1994) NMR View: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614.

    Article  CAS  Google Scholar 

  53. Goddard T. D. & Kneller D. G. Sparky 3 (University of California, San Francisco).

    Google Scholar 

  54. Vranken W. F., et al. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696.

    Article  PubMed  CAS  Google Scholar 

  55. Kraulis P. J. (1989) ANSIG: A program for the assignment of protein 1H 2D NMR spectra by interactive computer graphics. J. Magn. Reson. 84, 627–633.

    CAS  Google Scholar 

  56. Matsuki Y., Eddy M. T., & Herzfeld J. (2009) Spectroscopy by Integration of Frequency and Time Domain Information for Fast Acquisition of High-Resolution Dark Spectra. J. Am. Chem. Soc. 131, 4648–4656.

    Article  PubMed  CAS  Google Scholar 

  57. Laue E. D., Skilling J., Staunton J., Sibisi S., & Brereton R. G. (1985) Maximum Entropy Method in Nuclear Magnetic Resonance Spectroscopy. J. Magn. Reson. 62, 437–452.

    CAS  Google Scholar 

  58. Hoch J. C., Stern A. S., Donoho D. L., & Johnstone I. M. (1990) Maximum-Entropy Reconstruction of Complex (Phase-Sensitive) Spectra. J. Magn. Reson. 86, 236–246.

    CAS  Google Scholar 

  59. Barna J. C. J., Laue E. D., Mayger M. R., Skilling J., & Worrall S. J. P. (1987) Exponential Sampling, an Alternative Method for Sampling in Two-Dimensional NMR Experiments. J. Magn. Reson. 73, 69–77.

    CAS  Google Scholar 

  60. de Bouregas F. S. & Waugh J. S. (1992) ANTIOPE, a program for computer experiments on spin dynamics. J. Magn. Reson. 96, 280–289.

    Google Scholar 

  61. Smith S. A., Levante T. O., Meier B. H., & Ernst R. R. (1994) Computer Simulations in Magnetic Resonance. An Object-Oriented Programming Approach. J. Magn. Reson., Ser A 106, 75–105.

    CAS  Google Scholar 

  62. Blanton W. B. (2003) BlochLib: a fast NMR C++ tool kit. J. Magn. Reson. 162, 269–283.

    Article  PubMed  CAS  Google Scholar 

  63. Bak M., Rasmussen J. T., & Nielsen N. C. (2000) SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy. J. Magn. Reson. 147, 296–330.

    Article  PubMed  CAS  Google Scholar 

  64. Veshtort M. & Griffin R. G. (2006) SPINEVOLUTION: A powerful tool for the simulation of solid and liquid state NMR experiments. J. Magn. Reson. 178, 248–282.

    Article  PubMed  CAS  Google Scholar 

  65. Erickson-Viitanen S., et al. (1989) Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res. Hum. Retroviruses 5, 577–591.

    Article  PubMed  CAS  Google Scholar 

  66. Langsetmo K., Fuchs J., & Woodward C. (1989) Escherichia coli Thioredoxin Folds into 2 Compact Forms of Different Stability to Urea Denaturation. Biochemistry 28, 3211–3220.

    Article  PubMed  CAS  Google Scholar 

  67. Tasayco M. L. & Chao K. (1995) NMR study of the reconstitution of the beta-sheet of thioredoxin by fragment complementation. Proteins 22, 41–44.

    Article  PubMed  CAS  Google Scholar 

  68. Slaby I. & Holmgren A. (1975) Reconstitution of Escherichia coli thioredoxin from complementing peptide fragments obtained by cleavage at methionine-37 or arginine-73. J. Biol. Chem. 250, 1340–1347.

    PubMed  CAS  Google Scholar 

  69. Sambrook J., Fritsch E. F., & Sambrook J. (1989) Molecular cloning: a laboratory manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.) 2nd Ed.

    Google Scholar 

  70. Byeon I. J., et al. (2009) Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139, 780–790.

    Article  PubMed  CAS  Google Scholar 

  71. Mossessova E. & Lima C. D. (2000) Ulp1-SUMO Crystal Structure and Genetic Analysis Reveal Conserved Interactions and a Regulatory Element Essential for Cell Growth in Yeast. Mol. Cell 5, 865–876.

    Article  PubMed  CAS  Google Scholar 

  72. Bennett A. E., Rienstra C. M., Auger M., Lakshmi K. V., & Griffin R. G. (1995) Heteronuclear Decoupling in Rotating Solids. J. Chem. Phys. 103, 6951–6958.

    Article  CAS  Google Scholar 

  73. Chan J. C. C. & Tycko R. (2003) Recoupling of chemical shift anisotropies in solid-state NMR under high-speed magic-angle spinning and in uniformly 13C-labeled systems. J. Chem. Phys. 118, 8378–8389.

    Article  CAS  Google Scholar 

  74. Wylie B. J., Franks W. T., & Rienstra C. M. (2006) Determinations of 15N Chemical Shift Anisotropy Magnitudes in a Uniformly 15N,13C-Labeled Microcrystalline Protein by Three-Dimensional Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy. J. Phys. Chem. B 110, 10926–10936.

    Article  PubMed  CAS  Google Scholar 

  75. Munowitz M., Aue W. P., & Griffin R. G. (1982) Two-dimensional separation of dipolar and scaled isotropic chemical shift interactions in magic angle NMR spectra. J. Chem. Phys. 77, 1686–1689.

    Article  CAS  Google Scholar 

  76. Hohwy M., Jaroniec C. P., Reif B., Rienstra C. M., & Griffin R. G. (2000) Local structure and relaxation in solid-state NMR: Accurate measurement of amide N-H bond lengths and H-N-H bond angles. J. Am. Chem. Soc. 122, 3218–3219.

    Article  CAS  Google Scholar 

  77. Hong M., Yao X., Jakes K., & Huster D. (2002) Investigation of Molecular Motions by Lee-Goldburg Cross-Polarization NMR Spectroscopy. J. Phys. Chem. B 106, 7355–7364.

    Article  CAS  Google Scholar 

  78. van Rossum B. J., de Groot C. P., Ladizhansky V., Vega S., & de Groot H. J. M. (2000) A method for measuring heteronuclear (1H-13C) distances in high speed MAS NMR. J. Am. Chem. Soc. 122, 3465–3472.

    Article  Google Scholar 

  79. Lorieau J. L. & McDermott A. E. (2006) Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy. J. Am. Chem. Soc. 128, 11505–11512.

    Article  PubMed  CAS  Google Scholar 

  80. Gullion T. & Schaefer J. (1989) Rotational-echo double-resonance NMR. J. Magn. Reson. 81, 196–200.

    CAS  Google Scholar 

  81. Bielecki A., Kolbert A. C., & Levitt M. H. (1989) Frequency-switched pulse sequences: Homonuclear decoupling and dilute spin NMR in solids. Chem. Phys. Lett. 155, 341–346.

    Article  CAS  Google Scholar 

  82. Wickramasinghe N. P., Kotecha M., Samoson A., Past J., & Ishii Y. (2007) Sensitivity enhancement in (13)C solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing (1)H T(1) relaxation. J. Magn. Reson. 184, 350–356.

    Article  PubMed  CAS  Google Scholar 

  83. Wickramasinghe N. P., et al. (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic 1HT1 boundaries. Nat. Methods 6, 215–218.

    Article  PubMed  CAS  Google Scholar 

  84. Carravetta M., Edén M., Zhao X., Brinkmann A., & Levitt M. H. (2000) Symmetry principles for the design of radiofrequency pulse sequences in the nuclear magnetic resonance of rotating solids. Chem. Phys. Lett. 321, 205–215.

    Article  CAS  Google Scholar 

  85. Holl S. M., McKay R. A., Gullion T., & Schaefer J. (1990) Rotational-echo triple-resonance NMR. J. Magn. Reson. 89, 620–626.

    CAS  Google Scholar 

  86. Gullion T., Baker D. B., & Conradi M. S. (1990) New, compensated Carr-Purcell sequences. J. Magn. Reson. 89, 479–484.

    CAS  Google Scholar 

  87. Vinogradov E., Madhu P. K., & Vega S. (1999) High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee-Goldburg experiment. Chem. Phys. Lett. 314, 443–450.

    Article  CAS  Google Scholar 

  88. Erickson-Viitanen S., Manfredi J., Viitanen P., Tribe D. E., Tritch R., Hutchison C. A., 3rd, Loeb D. D., & Swanstrom R. (1989) Cleavage of HIV-1 gag polyprotein synthesized in vitro: sequential cleavage by the viral protease. AIDS Res. Hum. Retroviruses 5, 577–591.

    Article  CAS  Google Scholar 

  89. Marley J., Lu M., & Bracken C. (2001) A method for efficient isotopic labeling of recombinant proteins. J. Biomol. NMR 20, 71–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The projects discussed here are supported by the National Institutes of General Medical Sciences (NIH Grants P50GM082251 and R01GM085306) and the National Center for Research Resources (NIH Grants P20RR017716-07 and P20RR015588). The authors thank Maria Luisa Tasayco, Dabeiba Marulanda, Jun Yang, Marcela Cataldi, Vilma Arriaran for their contributions to the preparation of thioredoxin reassemblies and/or solid-state NMR studies of these reassemblies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Polenova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sun, S. et al. (2012). Solid-State NMR Spectroscopy of Protein Complexes. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics