Skip to main content

NMR Studies of Protein–Ligand Interactions

  • Protocol
  • First Online:
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

Nuclear magnetic resonance (NMR) has evolved into a powerful tool for characterizing protein–ligand interactions in solution under near physiological conditions. It is now frequently harnessed to assess the affinity and specificity of interactions; to identify binding epitopes on proteins and ligands; and to characterize the structural rearrangements induced by binding.

The first section of this chapter provides a general overview of the NMR study of protein–ligand interactions. The section is divided according to two main categories of experiments: those based on observing protein signals and those based on observing ligand signals. The next section explains two case studies performed in the authors’ laboratory. The first of these deals with the interaction between vascular endothelial growth factor and a peptidic ligand, and includes a detailed protocol of chemical shift perturbation experiments. The second one reports on the interaction between prolyl oligopeptidase and a small molecule as monitored by ligand saturation transfer difference (STD), and illustrates how NMR can be used to confirm binding and to identify the binding epitope of a ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiseman, T., Williston, S., Brandts, J. F., and Lin, L. N. (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137.

    Article  PubMed  CAS  Google Scholar 

  2. Baldwin, M. A. (2005) Mass spectrometers for the analysis of biomolecules. Methods Enzymol. 402, 3–48.

    Google Scholar 

  3. Dyachenko, A., Goldflam, M., Vilaseca, M., and Giralt, E. (2010) Molecular recognition at protein surface in solution and gas phase: Five VEGF peptidic ligands show inverse affinity when studied by NMR and CID-MS. Biopolymers 94, 689–700.

    Article  PubMed  CAS  Google Scholar 

  4. Englebienne, P., Hoonacker, A. V., and Verhas, M. (2003) Surface plasmon resonance: principles, methods and applications in biomedical sciences. Spectroscopy 17, 255–273.

    Article  CAS  Google Scholar 

  5. Fielding, L. (2003) NMR methods for the determination of protein-ligand dissociation constants. Curr. Top. Med. Chem. 3, 39–53.

    Article  PubMed  CAS  Google Scholar 

  6. Carlomagno, T. (2005) Ligand-target interactions: what can we learn from NMR? Annu. Rev. Biophys. Biomo.l Struct. 34, 245–266.

    Google Scholar 

  7. Lepre, C. A., Moore, J. M., and Peng, J. W. (2004) Theory and applications of NMR-based screening in pharmaceutical research. Chem. Rev. 104, 3641–3676.

    Article  PubMed  CAS  Google Scholar 

  8. Dalvit, C. (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov. Today 14, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  9. Tarrago, T., Claasen, B., Kichik, N., Rodriguez-Mias, R. A., Gairi, M., and Giralt, E. (2009) A cost-effective labeling strategy for the NMR study of large proteins: selective 15  N-labeling of the tryptophan side chains of prolyl oligopeptidase. Chembiochem. 10, 2736–2739.

    Article  PubMed  CAS  Google Scholar 

  10. Bogan, A. A., and Thorn, K. S. (1998) Anatomy of hot spots in protein interfaces. J. Mol. Biol. 280, 1–9.

    Article  PubMed  CAS  Google Scholar 

  11. Tugarinov, V., and Kay, L. E. (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chembiochem. 6, 1567–1577.

    Article  PubMed  CAS  Google Scholar 

  12. Bodenhausen, G., and Ruben, D. J. (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chemical Physics Letters 69, 185–189.

    Article  CAS  Google Scholar 

  13. Kay, L., Keifer, P., and Saarinen, T. (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665.

    Article  CAS  Google Scholar 

  14. Morris, G. A., and Freeman, R. (1979) Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc. 101, 760–762.

    Article  CAS  Google Scholar 

  15. Gang, Z., and Price, W. S. Solvent signal suppression in NMR. Prog. Nucl. Magn. Reson. Spectrosc. 56, 267–288.

    Google Scholar 

  16. Shuker, S. B., Hajduk, P. J., Meadows, R. P., and Fesik, S. W. (1996) Discovering High-Affinity Ligands for Proteins: SAR by NMR. Science 274, 1531–1534.

    Article  PubMed  CAS  Google Scholar 

  17. Smrcka, A. V., Kichik, N., Tarrago, T., Burroughs, M., Park, M. S., Itoga, N. K., Stern, H. A., Willardson, B. M., and Giralt, E. (2010) NMR analysis of G-protein betagamma subunit complexes reveals a dynamic G(alpha)-Gbetagamma subunit interface and multiple protein recognition modes. Proc. Natl. Acad. Sci. USA 107, 639–644.

    Article  PubMed  CAS  Google Scholar 

  18. Pellecchia, M. (2005) Solution nuclear magnetic resonance spectroscopy techniques for probing intermolecular interactions. Chem. Biol. 12, 961–971.

    Article  PubMed  CAS  Google Scholar 

  19. Reibarkh, M., Malia, T. J., and Wagner, G. (2006) NMR distinction of single- and multiple-mode binding of small-molecule protein ligands. J. Am. Chem. Soc. 128, 2160–2161.

    Article  PubMed  CAS  Google Scholar 

  20. Medek, A., Hajduk, P., Mack, J., and Fesik, S. (2000) The Use of Differential Chemical Shifts for Determining the Binding Site Location and Orientation of Protein-Bound Ligands. J. Am. Chem. Soc. 122, 1241–1242.

    Article  CAS  Google Scholar 

  21. Krishnamoorthy, J., Yu, V. C., and Mok, Y. K. (2010) Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems. PLoS One 5, e8943.

    Article  PubMed  Google Scholar 

  22. Neuhaus, D., and Williamson, M. P. (2000) The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd Edition ed., Wiley, New York.

    Google Scholar 

  23. Meiboom, S., and Gill, D. (1958) Modified Spin-Echo Method for Measuring Nuclear Relaxation Times, Review of Scientific Instruments 29, 688–691.

    Article  CAS  Google Scholar 

  24. Ni, F., and Scheraga, H. A. (1994) Use of the Transferred Nuclear Overhauser Effect To Determine the Conformations of Ligands Bound to Proteins. Accts. Chem. Res. 27, 257–264.

    Article  CAS  Google Scholar 

  25. Moriz, M., and Bernd, M. (1999) Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem. Int. Ed. Engl. 38, 1784–1788.

    Article  Google Scholar 

  26. Klein, J., Meinecke, R., Mayer, M., and Meyer, B. (1999) Detecting Binding Affinity to Immobilized Receptor Proteins in Compound Libraries by HR-MAS STD NMR. J. Am. Chem. Soc. 121, 5336–5337.

    Article  CAS  Google Scholar 

  27. Groves, P., Kover, K. E., Andre, S., Bandorowicz-Pikula, J., Batta, G., Bruix, M., Buchet, R., Canales, A., Canada, F. J., Gabius, H. J., Laurents, D. V., Naranjo, J. R., Palczewska, M., Pikula, S., Rial, E., Strzelecka-Kiliszek, A., and Jimenez-Barbero, J. (2007) Temperature dependence of ligand-protein complex formation as reflected by saturation transfer difference NMR experiments. Magn. Reson. Chem. 45, 745–748.

    Article  PubMed  CAS  Google Scholar 

  28. Mayer, M., and Meyer, B. (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 123, 6108–6117.

    Article  PubMed  CAS  Google Scholar 

  29. Mayer, M., and James, T. L. (2004) NMR-based characterization of phenothiazines as a RNA binding scaffold. J. Am. Chem. Soc. 126, 4453–4460.

    Article  PubMed  CAS  Google Scholar 

  30. Meyer, B., and Peters, T. (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. Engl. 42, 864–890.

    Article  PubMed  CAS  Google Scholar 

  31. Dalvit, C., Pevarello, P., Tato, M., Veronesi, M., Vulpetti, A., and Sundstrom, M. (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J. Biomol. NMR 18, 65–68.

    Article  PubMed  CAS  Google Scholar 

  32. Dalvit, C., Fogliatto, G., Stewart, A., Veronesi, M., and Stockman, B. (2001) WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability. J. Biomol. NMR 21, 349–359.

    Article  PubMed  CAS  Google Scholar 

  33. Pellecchia, M., Sem, D. S., and Wuthrich, K. (2002) NMR in drug discovery. Nat. Rev. Drug Discov. 1, 211–219.

    Article  PubMed  CAS  Google Scholar 

  34. Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges, J., Hajduk, P. J., Joseph, M. K., Kitada, S., Korsmeyer, S. J., Kunzer, A. R., Letai, A., Li, C., Mitten, M. J., Nettesheim, D. G., Ng, S., Nimmer, P. M., O’Connor, J. M., Oleksijew, A., Petros, A. M., Reed, J. C., Shen, W., Tahir, S. K., Thompson, C. B., Tomaselli, K. J., Wang, B., Wendt, M. D., Zhang, H., Fesik, S. W., and Rosenberg, S. H. (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681.

    Article  PubMed  CAS  Google Scholar 

  35. Fairbrother, W. J., Champe, M. A., Christinger, H. W., Keyt, B. A., and Starovasnik, M. A. (1997) 1H, 13C, and 15N backbone assignment and secondary structure of the receptor-binding domain of vascular endothelial growth factor. Protein Sci. 6, 2250–2260.

    Article  PubMed  CAS  Google Scholar 

  36. Bruker Corporation, (2007) Topspin 2.0, http://www.bruker-biospin.com/nmr_software.html.

  37. Keller, R. (2004) The Computer Aided Resonance Assignment Tutorial, 1st edition ed., CANTINA Verlag.

    Google Scholar 

  38. Origin Corporation, (2007) Origin 8.0, http://www.originlab.com/.

  39. Chemical computing group, (2009) http://www.chemcomp.com/index.htm.

  40. Pan, B., Li, B., Russell, S. J., Tom, J. Y., Cochran, A. G., and Fairbrother, W. J. (2002) Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor. J. Mol. Biol. 316, 769–787.

    Article  PubMed  CAS  Google Scholar 

  41. Mori, S., Abeygunawardana, C., Johnson, M. O., and van Zijl, P. C. (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J. Magn. Reson. B 108, 94–98.

    Article  PubMed  CAS  Google Scholar 

  42. Piotto, M., Saudek, V., and Sklenář, V. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665.

    Article  PubMed  CAS  Google Scholar 

  43. Tarrago, T., Kichik, N., Claasen, B., Prades, R., Teixido, M., and Giralt, E. (2008) Baicalin, a prodrug able to reach the CNS, is a prolyl oligopeptidase inhibitor. Bioorg. Med. Chem. 16, 7516–7524.

    Article  PubMed  CAS  Google Scholar 

  44. Voehler, M. W., Collier, G., Young, J. K., Stone, M. P., and Germann, M. W. (2006) Performance of cryogenic probes as a function of ionic strength and sample tube geometry. J. Magn. Reson. 183, 102–109.

    Article  PubMed  CAS  Google Scholar 

  45. Schumann, F. H., Riepl, H., Maurer, T., Gronwald, W., Neidig, K. P., and Kalbitzer, H. R. (2007) Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions. J. Biomol. NMR 39, 275–289.

    Article  PubMed  CAS  Google Scholar 

  46. Hwang, T. L., and Shaka, A. J. (1995) Water suppression that works. Excitation sculpting using arbitrary waveforms and pulsed field gradients. J. Magn. Reson. 112, 275–279.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernest Giralt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goldflam, M., Tarragó, T., Gairí, M., Giralt, E. (2012). NMR Studies of Protein–Ligand Interactions. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics