Skip to main content

Bacterial Production and Solution NMR Studies of a Viral Membrane Ion Channel

  • Protocol
  • First Online:
Protein NMR Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 831))

Abstract

Advances in solution nuclear magnetic resonance (NMR) methodology that enable studies of very large proteins have also paved the way for studies of membrane proteins that behave like large proteins due to the added weight of surfactants. Solution NMR has been used to determine the high-resolution structures of several small, membrane proteins dissolved in detergent micelles and small bicelles. However, the usual difficulties with membrane proteins in producing, purifying, and stabilizing the proteins away from native membranes remain, requiring intensive screening efforts. Low levels of heterologous expression can be the most detrimental aspect to studying membrane proteins. This is exacerbated for NMR studies because of the costs of isotopically enriched media. Thus, solution NMR studies have tended to focus on relatively small, membrane proteins that can be expressed into inclusion bodies and refolded. Here, we describe the methods used to produce, purify, and refold the proton channel M2 into detergent micelles, and the procedures used to determine chemical shift assignments and the atomic level structure of the closed form of the homotetrameric channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LeMaster, D. M. (1994) Isotope labeling in solution protein assignment and structural analysis. Prog. Nucl. Magn. Reson. Spectrosc. 26, 371–419.

    Article  CAS  Google Scholar 

  2. Pervushin, K., Riek, R., Wider, G., and Wuthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. U.S.A 94, 12366–12371.

    Article  PubMed  CAS  Google Scholar 

  3. Ruschak, A. M., and Kay, L. E. (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J. Biomol. NMR 46, 75–87.

    Article  PubMed  CAS  Google Scholar 

  4. Gautier, A., Mott, H. R., Bostock, M. J., Kirkpatrick, J. P., and Nietlispach, D. (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat. Struct. Mol. Biol. 17, 768–774.

    Article  PubMed  CAS  Google Scholar 

  5. Imai, S., Osawa, M., Takeuchi, K., and Shimada, I. (2010) Structural basis underlying the dual gate properties of KcsA. Proc. Natl. Acad. Sci. U.S.A. 107, 6216–6221.

    Google Scholar 

  6. Bruggert, M., Rehm, T., Shanker, S., Georgescu, J., and Holak, T. A. (2003) A novel medium for expression of proteins selectively labeled with 15N-amino acids in Spodoptera frugiperda (Sf9) insect cells. J. Biomol. NMR 25, 335–348.

    Article  PubMed  Google Scholar 

  7. Strauss, A., Bitsch, F., Cutting, B., Fendrich, G., Graff, P., Liebetanz, J., Zurini, M., and Jahnke, W. (2003) Amino-acid-type selective isotope labeling of proteins expressed in Baculovirus-infected insect cells useful for NMR studies. J. Biomol. NMR 26, 367–372.

    Article  PubMed  CAS  Google Scholar 

  8. Makino, S., Goren, M. A., Fox, B. G., and Markley, J. L. Cell-free protein synthesis technology in NMR high-throughput structure determination. Methods Mol. Biol. 607, 127–147.

    Google Scholar 

  9. Kim, H. J., Howell, S. C., Van Horn, W. D., Jeon, Y. H., and Sanders, C. R. (2009) Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. Prog. Nucl. Magn. Reson. Spectrosc. 55, 335–360.

    Article  CAS  Google Scholar 

  10. Warchawski, D. (2010) Membrane proteins of known structure determined by NMR. http://www.drorlist.com/nmr/MPNMR.html.

  11. Chill, J. H., Louis, J. M., Miller, C., and Bax, A. (2006) NMR study of the tetrameric KcsA potassium channel in detergent micelles. Protein Sci. 15, 684–698.

    Article  PubMed  CAS  Google Scholar 

  12. Liu, Y., Engelman, D. M., and Gerstein, M. (2002) Genomic analysis of membrane protein families: abundance and conserved motifs. Genome Biol. 3, research0054.

    Google Scholar 

  13. Marsden, R. L., Lee, D., Maibaum, M., Yeats, C., and Orengo, C. A. (2006) Comprehensive genome analysis of 203 genomes provides structural genomics with new insights into protein family space. Nucleic Acids Res. 34, 1066–1080.

    Article  PubMed  CAS  Google Scholar 

  14. Staley, J. P., and Kim, P. S. (1994) Formation of a native-like subdomain in a partially folded intermediate of bovine pancreatic trypsin inhibitor. Protein Sci. 3, 1822–1832.

    Article  PubMed  CAS  Google Scholar 

  15. Ma, C., Marassi, F. M., Jones, D. H., Straus, S. K., Bour, S., Strebel, K., Schubert, U., Oblatt-Montal, M., Montal, M., and Opella, S. J. (2002) Expression, purification, and activities of full-length and truncated versions of the integral membrane protein Vpu from HIV-1. Protein Sci. 11, 546–557.

    Article  PubMed  CAS  Google Scholar 

  16. Zheng, H., Zhao, J., Wang, S., Lin, C. M., Chen, T., Jones, D. H., Ma, C., Opella, S., and Xie, X. Q. (2005) Biosynthesis and purification of a hydrophobic peptide from transmembrane domains of G-protein-coupled CB2 receptor. J. Pept. Res. 65, 450–458.

    Article  PubMed  CAS  Google Scholar 

  17. Diefenderfer, C., Lee, J., Mlyanarski, S., Guo, Y., and Glover, K. J. (2009) Reliable expression and purification of highly insoluble transmembrane domains. Anal. Biochem. 384, 274–278.

    Article  PubMed  CAS  Google Scholar 

  18. Call, M. E., Schnell, J. R., Xu, C., Lutz, R. A., Chou, J. J., and Wucherpfennig, K. W. (2006) The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell 127, 355–368.

    Article  PubMed  CAS  Google Scholar 

  19. Chong, Y. H., Ball, J. M., Issel, C. J., Montelaro, R. C., and Rushlow, K. E. (1991) Analysis of equine humoral immune responses to the transmembrane envelope glycoprotein (gp45) of equine infectious anemia virus. J. Virol. 65, 1013–1018.

    PubMed  CAS  Google Scholar 

  20. Smith, J. G., Mothes, W., Blacklow, S. C., and Cunningham, J. M. (2004) The mature avian leukosis virus subgroup A envelope glycoprotein is metastable, and refolding induced by the synergistic effects of receptor binding and low pH is coupled to infection. J. Virol. 78, 1403–1410.

    Article  PubMed  CAS  Google Scholar 

  21. Bertrand, K., Squires, C., and Yanofsky, C. (1976) Transcription termination in vivo in the leader region of the tryptophan operon of Escherichia coli. J. Mol. Biol. 103, 319–337.

    Article  PubMed  CAS  Google Scholar 

  22. Miozzari, G. F., and Yanofsky, C. (1978) Translation of the leader region of the Escherichia coli tryptophan operon. J. Bacteriol. 133, 1457–1466.

    PubMed  CAS  Google Scholar 

  23. Kleid, D. G., Yansura, D., Small, B., Dowbenko, D., Moore, D. M., Grubman, M. J., McKercher, P. D., Morgan, D. O., Robertson, B. H., and Bachrach, H. L. (1981) Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science 214, 1125–1129.

    Article  PubMed  CAS  Google Scholar 

  24. Schnell, J. R., and Chou, J. J. (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451, 591–595.

    Article  PubMed  CAS  Google Scholar 

  25. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  26. Keller, R. (2004) The Computer Aided Resonance Assignment Tutorial, First Edition ed., Cantina-Verlag, Goldau, Switzerland. http://cara.nmr-software.org/downloads/3-85600-112-3.pdf.

  27. Cornilescu, G., Delaglio, F., and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J. Biomol. NMR 13, 289–302.

    Article  PubMed  CAS  Google Scholar 

  28. Schwieters, C. D., Kuszewski, J., Tjandra, N., and Clore, G. M. (2002) The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 66–74.

    Google Scholar 

  29. Zweckstetter, M., Bax, A. (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791–3792.

    Article  CAS  Google Scholar 

  30. Salzmann, M., Wider, G., Pervushin, K., and Wuthrich, K. (1999) Improved sensitivity and coherence selection for [N-15,H-1]-TROSY elements in triple resonance experiments. J. Biomol. NMR 15, 181–184.

    Article  PubMed  CAS  Google Scholar 

  31. Kay, L. E., Ikura, M., Tschudin, R., and Bax, A. (1990) Three-dimensional triple resonance NMR spectroscopy of isotopically enriched proteins. J. Magn. Reson. 89, 496–514.

    CAS  Google Scholar 

  32. Neri, D., Szyperski, T., Otting, G., Senn, H., and Wuthrich, K. (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28, 7510–7516.

    Article  PubMed  CAS  Google Scholar 

  33. Grzesiek, S., Vuister, G. W., and Bax, A. (1993) A simple and sensitive experiment for measurement of JCC couplings between backbone carbonyl and methyl carbons in isotopically enriched proteins. J. Biomol. NMR 3, 487–493.

    PubMed  CAS  Google Scholar 

  34. Vuister, G. W., Wang, A. C., and Bax, A. (1993) Measurement of three-bond nitrogen-carbon J couplings in proteins uniformly enriched in 15N and 13C. J. Am. Chem. Soc. 115, 5334–5335.

    Article  CAS  Google Scholar 

  35. Bax, A., Vuister, G. W., Grzesiek, S., Delaglio, F., Wang, A. C., Tschudin, R., and Zhu, G. (1994) Measurement of homo- and heteronuclear J couplings from quantitative J correlation. Methods Enzymol. 239, 79–105.

    Article  PubMed  CAS  Google Scholar 

  36. MacKenzie, K. R., Prestegard, J. H., and Engelman, D. M. (1996) Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon-carbon couplings and 13C chemical shifts. J. Biomol. NMR 7, 256–260.

    Article  PubMed  CAS  Google Scholar 

  37. Hu, J.-S., Grzesiek, S., and Bax, A. (1997) Chi1 angle information from a simple two-dimensional NMR experiment which identifies trans 3JNCg couplings in isotopically enriched proteins. J. Biomol. NMR 9, 323–328.

    Article  PubMed  CAS  Google Scholar 

  38. Hu, J.-S., Grzesiek, S., and Bax, A. (1997) Two-dimensional NMR methods for determining c1 angles of aromatic residues in proteins from three-bond JC′Cg and JNCgcouplings. J. Am. Chem. Soc. 119, 1803–1804.

    Article  CAS  Google Scholar 

  39. Tycko, R., Blanco, F. J., and Ishii, Y. (2000) Alignment of biopolymers in strained gels: A new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J. Am. Chem. Soc. 122, 9340–9341.

    Article  CAS  Google Scholar 

  40. Sass, H. J., Musco, G., Stahl, S. J., Wingfield, P. T., and Grzesiek, S. (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J. Biomol. NMR 18, 303–309.

    Article  PubMed  CAS  Google Scholar 

  41. Chou, J. J., Gaemers, S., Howder, B., Louis, J. M., Bax, A. (2001) A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J. Biomol. NMR 21, 377–382.

    Article  PubMed  CAS  Google Scholar 

  42. Weigelt, J. (1998) Single Scan, Sensitivity- and Gradient-Enhanced TROSY for Multidimen-sional NMR Experiments. J. Am. Chem. Soc. 120, 10778–10779.

    Article  CAS  Google Scholar 

  43. Cornilescu, G., Marquardt, J. L., Ottiger, M., and Bax, A. (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 6836–6837.

    Article  CAS  Google Scholar 

  44. Lakomek, N. A., Lange, O. F., Walter, K. F., Fares, C., Egger, D., Lunkenheimer, P., Meiler, J., Grubmuller, H., Becker, S., de Groot, B. L., and Griesinger, C. (2008) Residual dipolar couplings as a tool to study molecular recognition of ubiquitin. Biochem. Soc. Trans. 36, 1433–1437.

    Article  PubMed  CAS  Google Scholar 

  45. Loria, J. P., Rance, M., and Palmer, A. G. (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J. Am. Chem. Soc. 121, 2331–2332.

    Article  CAS  Google Scholar 

  46. Allerhand, A., and Thiele, E. (1966) Analysis of Carr-Purcell Spin-Echo NMR Experiments on Multiple-Spin Systems. II. The Effect of Chemical Exchange. J. Chem. Phys. 45, 902–916.

    CAS  Google Scholar 

  47. Golovanov, A. P., Hautbergue, G. M., Wilson, S. A., and Lian, L. Y. (2004) A simple method for improving protein solubility and long-term stability. J. Am. Chem. Soc. 126, 8933–8939.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

James J. Chou and the National Institutes of Health, USA (NIH) are acknowledged for supporting development of the approaches described. J.R.S. was supported by a Ruth Kirschstein Fellowship from the NIH. Matthew E. Call is acknowledged for many useful modifications and additions to the trpLE fusion expression and purification protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Schnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Claridge, J.K., Schnell, J.R. (2012). Bacterial Production and Solution NMR Studies of a Viral Membrane Ion Channel. In: Shekhtman, A., Burz, D. (eds) Protein NMR Techniques. Methods in Molecular Biology, vol 831. Humana Press. https://doi.org/10.1007/978-1-61779-480-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-480-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-479-7

  • Online ISBN: 978-1-61779-480-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics