Skip to main content

A Defined In Vitro System to Study ATP-Dependent Remodeling of Short Chromatin Fibers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 833))

Abstract

ATP-dependent remodeling factors regulate chromatin structure by catalyzing processes such as nucleosome repositioning or conformational changes of nucleosomes. Predominantly, their enzymatic properties have been investigated using mononucleosomal substrates. However, short nucleosomal arrays represent a much better mimic of the physiological chromatin context. Here, we provide a protocol for the enzyme-free reconstitution of regularly spaced nucleosomal arrays. We then explain how these arrays can serve as substrates to monitor ATP-dependent nucleosome movements and changes in the accessibility of nucleosomal DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chioda, M., and Becker, P. B. (2010) Soft skills turned into hard facts: nucleosome remodelling at developmental switches, Heredity 105, 71–79.

    Article  PubMed  CAS  Google Scholar 

  2. Gangaraju, V. K., and Bartholomew, B. (2007) Mechanisms of ATP dependent chromatin remodeling, Mutat Res 618, 3–17.

    Article  PubMed  CAS  Google Scholar 

  3. Huynh, V. A., Robinson, P. J., and Rhodes, D. (2005) A method for the in vitro reconstitution of a defined “30 nm” chromatin fibre containing stoichiometric amounts of the linker histone, J Mol Biol 345, 957–968.

    Article  PubMed  CAS  Google Scholar 

  4. Robinson, P. J., An, W., Routh, A., Martino, F., Chapman, L., Roeder, R. G., and Rhodes, D. (2008) 30 nm chromatin fibre decompaction requires both H4-K16 acetylation and linker histone eviction, J Mol Biol 381, 816–825.

    Article  PubMed  CAS  Google Scholar 

  5. Robinson, P. J., Fairall, L., Huynh, V. A., and Rhodes, D. (2006) EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure, Proc Natl Acad Sci U S A 103, 6506–6511.

    Article  PubMed  CAS  Google Scholar 

  6. Routh, A., Sandin, S., and Rhodes, D. (2008) Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure, Proc Natl Acad Sci U S A 105, 8872–8877.

    Article  PubMed  CAS  Google Scholar 

  7. Maier, V. K., Chioda, M., Rhodes, D., and Becker, P. B. (2008) ACF catalyses chromatosome movements in chromatin fibres, EMBO J 27, 817–826.

    Article  PubMed  CAS  Google Scholar 

  8. Becker, P. B., Tsukiyama, T., and Wu, C. (1994) Chromatin assembly extracts from Drosophila embryos, Methods Cell Biol 44, 207–223.

    Article  PubMed  CAS  Google Scholar 

  9. Bulger, M., Ito, T., Kamakaka, R. T., and Kadonaga, J. T. (1995) Assembly of regularly spaced nucleosome arrays by Drosophila chromatin assembly factor 1 and a 56-kDa histone-binding protein, Proc Natl Acad Sci U S A 92, 11726–11730.

    Article  PubMed  CAS  Google Scholar 

  10. Fyodorov, D. V., and Kadonaga, J. T. (2003) Chromatin assembly in vitro with purified recombinant ACF and NAP-1, Methods Enzymol 371, 499–515.

    Article  PubMed  CAS  Google Scholar 

  11. Glikin, G. C., Ruberti, I., and Worcel, A. (1984) Chromatin assembly in Xenopus oocytes: in vitro studies, Cell 37, 33–41.

    Article  PubMed  CAS  Google Scholar 

  12. Loyola, A., and Reinberg, D. (2003) Histone deposition and chromatin assembly by RSF, Methods 31, 96–103.

    Article  PubMed  CAS  Google Scholar 

  13. Sandaltzopoulos, R., and Becker, P. B. (2009) Analysis of reconstituted chromatin using a solid-phase approach, Methods Mol Biol 523, 11–25.

    Article  PubMed  CAS  Google Scholar 

  14. Schwarz, P. M., Felthauser, A., Fletcher, T. M., and Hansen, J. C. (1996) Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains, Biochemistry 35, 4009–4015.

    Article  PubMed  CAS  Google Scholar 

  15. Nightingale, K., Dimitrov, S., Reeves, R., and Wolffe, A. P. (1996) Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin, EMBO J 15, 548–561.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of P. Becker on nucleosome remodeling is supported by the Deutsche Forschungsgemeinschaft (SFB594). We thank Mariacristina Chioda, Henrike Klinker, and Felix Müller-Planitz for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Becker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Maier, V.K., Becker, P.B. (2012). A Defined In Vitro System to Study ATP-Dependent Remodeling of Short Chromatin Fibers. In: Morse, R. (eds) Chromatin Remodeling. Methods in Molecular Biology, vol 833. Humana Press. https://doi.org/10.1007/978-1-61779-477-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-477-3_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-476-6

  • Online ISBN: 978-1-61779-477-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics