Skip to main content

Reconstitution of SUMO-Dependent Ubiquitylation In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

In eukaryotic cells, most soluble proteins are degraded via the ubiquitin proteasome system. The recognition signal for the proteasome consists of a lysine 48-linked ubiquitin chain which is posttranslationally conjugated to lysine residues in target proteins. This conjugation reaction is mediated by an enzymatic cascade consisting of specific E1, E2, and E3 enzymes. The small ubiquitin-related modifier (SUMO) is conjugated to target proteins via a similar cascade of SUMO-specific enzymes. Contrary to the long-standing assumption that SUMO does not participate in proteolytic targeting, proteasomal inhibition stabilizes both ubiquitin and SUMO conjugates (SCs). This led to the discovery of ubiquitin ligases for SUMO conjugates (ULS proteins or SUMO-targeted ubiquitin ligases) that target SUMOylated proteins for proteasomal degradation. The so far identified ULS proteins each contains a really interesting new gene domain with ubiquitin-E3 ligase activity and several SUMO interaction motifs that noncovalently bind SUMO. In order to identify ULS proteins and characterize their substrates, it is important to reconstitute this reaction in vitro. In this chapter, we describe step-by-step protocols for the production and purification of recombinant SUMOylated substrates as well as their in vitro ubiquitylation by ULS proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403.

    Article  PubMed  CAS  Google Scholar 

  2. Marques AJ, Palanimurugan R, Matias AC et al (2009) Catalytic mechanism and assembly of the proteasome. Chem Rev 109:1509–1536.

    Article  PubMed  CAS  Google Scholar 

  3. Clague MJ, Urbe S (2010) Ubiquitin: same molecule, different degradation pathways. Cell 143:682–685.

    Article  PubMed  CAS  Google Scholar 

  4. Hatakeyama S, Nakayama KI (2003) U-box proteins as a new family of ubiquitin ligases. Biochem Biophys Res Commun 302:635–645.

    Article  PubMed  CAS  Google Scholar 

  5. Li W, Ye Y (2008) Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406.

    Article  PubMed  CAS  Google Scholar 

  6. Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434.

    Article  PubMed  CAS  Google Scholar 

  7. Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409.

    Article  PubMed  CAS  Google Scholar 

  8. Xu Z, Chan HY, Lam WL et al (2009) SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 11:1453–1484.

    Article  PubMed  CAS  Google Scholar 

  9. Miteva M, Keusekotten K, Hofmann K et al. (2010) Sumoylation as a Signal for Polyubiquitylation and Proteasomal Degradation, in Conjugation and Deconjugation of Ubiquitin Family Modifiers (Groettrup, M., Ed.), Landes Bioscience and Springer Science  +  Business Media, Austin, TX, USA.

    Google Scholar 

  10. Bencsath KP, Podgorski MS, Pagala VR et al (2002) Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J Biol Chem 277:47938–47945.

    Article  PubMed  CAS  Google Scholar 

  11. Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278:44113–44120.

    Article  PubMed  CAS  Google Scholar 

  12. Skilton A, Ho JC, Mercer B et al (2009) SUMO chain formation is required for response to replication arrest in S. pombe. PLoS One 4:e6750.

    Article  PubMed  Google Scholar 

  13. Tatham MH, Jaffray E, Vaughan OA et al (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276:35368–35374.

    Article  PubMed  CAS  Google Scholar 

  14. Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem 279:32262–32268.

    Article  PubMed  CAS  Google Scholar 

  15. Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275:6252–6258.

    Article  PubMed  CAS  Google Scholar 

  16. Haindl M, Harasim T, Eick D, Muller S (2008) The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 9:273–279.

    Article  PubMed  CAS  Google Scholar 

  17. Golebiowski F, Matic I, Tatham MH et al (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2:ra24.

    Google Scholar 

  18. Uzunova K, Gottsche K, Miteva M et al (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282:34167–34175.

    Article  PubMed  CAS  Google Scholar 

  19. Xie Y, Kerscher O, Kroetz MB et al (2007) The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282:34176–34184.

    Article  PubMed  CAS  Google Scholar 

  20. Mullen JR, Kaliraman V, Ibrahim SS, Brill SJ (2001) Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. Genetics 157:103–118.

    PubMed  CAS  Google Scholar 

  21. Ii T, Fung J, Mullen JR, Brill SJ (2007) The yeast Slx5-Slx8 DNA integrity complex displays ubiquitin ligase activity. Cell Cycle 6:2800–2809.

    Article  PubMed  CAS  Google Scholar 

  22. Kosoy A, Calonge TM, Outwin EA, O’Connell MJ (2007) Fission yeast Rnf4 homologs are required for DNA repair. J Biol Chem 282:20388–20394.

    Article  PubMed  CAS  Google Scholar 

  23. Prudden J, Pebernard S, Raffa G et al (2007) SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26:4089–4101.

    Article  PubMed  CAS  Google Scholar 

  24. Sun H, Leverson JD, Hunter T (2007) Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J 26:4102–4112.

    Article  PubMed  CAS  Google Scholar 

  25. Häkli M, Lorick KL, Weissman AM et al (2004) Transcriptional coregulator SNURF (RNF4) possesses ubiquitin E3 ligase activity. FEBS Lett 560:56–62.

    Article  PubMed  Google Scholar 

  26. Häkli M, Karvonen U, Janne OA, Palvimo JJ (2005) SUMO-1 promotes association of SNURF (RNF4) with PML nuclear bodies. Exp Cell Res 304:224–233.

    Article  PubMed  Google Scholar 

  27. Lallemand-Breitenbach V, Jeanne M, Benhenda S et al (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10:547–555.

    Article  PubMed  CAS  Google Scholar 

  28. Tatham MH, Geoffroy MC, Shen L et al (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10:538–546.

    Article  PubMed  CAS  Google Scholar 

  29. Weisshaar SR, Keusekotten K, Krause A et al (2008) Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett 582:3174–3178.

    Article  PubMed  CAS  Google Scholar 

  30. Mukhopadhyay D, Arnaoutov A, Dasso M (2010) The SUMO protease SENP6 is essential for inner kinetochore assembly. J Cell Biol 188:681–692.

    Article  PubMed  CAS  Google Scholar 

  31. Mullen JR, Brill SJ (2008) Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. J Biol Chem 283:19912–19921.

    Article  PubMed  CAS  Google Scholar 

  32. Lorick KL, Jensen JP, Weissman AM (2005) Expression, purification, and properties of the Ubc4/5 family of E2 enzymes. Methods Enzymol 398:54–68.

    Article  PubMed  CAS  Google Scholar 

  33. Frangioni JV, Neel BG (1993) Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal Biochem 210:179–187.

    Article  PubMed  CAS  Google Scholar 

  34. Furukawa M, Andrews PS, Xiong Y (2005) Assays for RING family ubiquitin ligases. Methods Mol Biol 301:37–46.

    PubMed  CAS  Google Scholar 

  35. Uchimura Y, Nakamura M, Sugasawa K et al (2004) Overproduction of eukaryotic SUMO-1- and SUMO-2-conjugated proteins in Escherichia coli. Anal Biochem 331:204–206.

    PubMed  CAS  Google Scholar 

  36. Uchimura Y, Nakao M, Saitoh H (2004) Generation of SUMO-1 modified proteins in E. coli: towards understanding the biochemistry/structural biology of the SUMO-1 pathway. FEBS Lett 564:85–90.

    Article  PubMed  CAS  Google Scholar 

  37. Werner A, Moutty MC, Moller U, Melchior F (2009) Performing in vitro sumoylation reactions using recombinant enzymes. Methods Mol Biol 497:187–199.

    Article  PubMed  CAS  Google Scholar 

  38. Bossis G, Chmielarska K, Gartner U et al (2005) A fluorescence resonance energy transfer-based assay to study SUMO modification in solution. Methods Enzymol 398:20–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit J. K. Praefcke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Keusekotten, K., Praefcke, G.J.K. (2012). Reconstitution of SUMO-Dependent Ubiquitylation In Vitro. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics