Skip to main content

TIPI: TEV Protease-Mediated Induction of Protein Instability

  • Protocol
  • First Online:
Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

Reverse genetics approaches require methods to inactivate a specific protein. One possibility is to modify the target protein with a degradation signal (degron). Degrons are short, transferable sequences that confer protein instability. They target proteins for degradation either constitutively or after activation, e.g., by phosphorylation, presence of a binding partner, or conformational rearrangements in the substrate. In this chapter, we describe a synthetic way to activate a degron. It employs the generation of an N-degron by cleavage of a substrate with the site-specific tobacco etch virus (TEV) protease. Subsequently, the substrate is targeted for degradation by the ubiquitin-proteasome system. This TEV protease-induced protein instability system provides a powerful approach to generate conditional mutants for synthetic biology or for the investigation of protein functions in a specific cellular context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479.

    Article  PubMed  CAS  Google Scholar 

  2. Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439.

    Article  PubMed  CAS  Google Scholar 

  3. Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9:679–690.

    Article  PubMed  CAS  Google Scholar 

  4. Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165–172.

    Article  PubMed  CAS  Google Scholar 

  5. Tasaki T, Kwon YT (2007) The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem Sci 32:520–528.

    Article  PubMed  CAS  Google Scholar 

  6. Bartel B, Wunning I, Varshavsky A (1990) The recognition component of the N-end rule pathway. Embo J 9:3179–3189.

    PubMed  CAS  Google Scholar 

  7. Hwang CS, Shemorry A, Varshavsky A (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–977.

    Article  PubMed  CAS  Google Scholar 

  8. Rao H, Uhlmann F, Nasmyth K, Varshavsky A (2001) Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 410:955–959.

    Article  PubMed  CAS  Google Scholar 

  9. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.

    Article  PubMed  CAS  Google Scholar 

  10. Taxis C, Stier G, Spadaccini R, Knop M (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5:267.

    Article  PubMed  Google Scholar 

  11. Kapust RB, Tozser J, Copeland TD, Waugh DS (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955.

    Article  PubMed  CAS  Google Scholar 

  12. Suzuki T, Varshavsky A (1999) Degradation signals in the lysine-asparagine sequence space. Embo J 18:6017–6026.

    Article  PubMed  CAS  Google Scholar 

  13. Henrichs T, Mikhaleva N, Conz C et al (2005) Target-directed proteolysis at the ribosome. Proc Natl Acad Sci USA 102:4246–4251.

    Article  PubMed  CAS  Google Scholar 

  14. Pauli A, Althoff F, Oliveira RA et al (2008) Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev Cell 14:239–251.

    Article  PubMed  CAS  Google Scholar 

  15. Satoh A, Warren G (2008) In situ cleavage of the acidic domain from the p115 tether inhibits exocytic transport. Traffic 9:1522–1529.

    Article  PubMed  CAS  Google Scholar 

  16. Uhlmann F, Wernic D, Poupart MA et al (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103:375–386.

    Article  PubMed  CAS  Google Scholar 

  17. Wehr MC, Laage R, Bolz U et al (2006) Monitoring regulated protein-protein interactions using split TEV. Nat Methods 3:985–993.

    Article  PubMed  CAS  Google Scholar 

  18. Sheff MA, Thorn KS (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21:661–670.

    Article  PubMed  CAS  Google Scholar 

  19. Pereira G, Tanaka TU, Nasmyth K, Schiebel E (2001) Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J 20:6359–6370.

    Article  PubMed  CAS  Google Scholar 

  20. Janke C, Magiera MM, Rathfelder N et al (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21:947–962.

    Article  PubMed  CAS  Google Scholar 

  21. Taxis C, Knop M (2006) System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechniques 40:73–78.

    Article  PubMed  CAS  Google Scholar 

  22. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346.

    Article  PubMed  CAS  Google Scholar 

  23. Ausubel FM, Kingston, R.E., Seidman, F.G., Struhl, K., Moore, D.D., Brent, R., and Smith, F.A., (Ed.) (1995) Current Protocols in Molecular Biology, John Wiley and Sons, New York, USA.

    Google Scholar 

  24. Faber KN, Kram AM, Ehrmann M, Veenhuis M (2001) A novel method to determine the topology of peroxisomal membrane proteins in vivo using the tobacco etch virus protease. J Biol Chem 276:36501–36507.

    Article  PubMed  CAS  Google Scholar 

  25. Yaffe MP, Schatz G (1984) Two nuclear mutations that block mitochondrial protein import in yeast. Proc Natl Acad Sci USA 81:4819–4823.

    Article  PubMed  CAS  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    Article  PubMed  CAS  Google Scholar 

  27. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354.

    Article  PubMed  CAS  Google Scholar 

  28. Storici F, Lewis LK, Resnick MA (2001) In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19:773–776.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank A. Kaufmann for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Knop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Taxis, C., Knop, M. (2012). TIPI: TEV Protease-Mediated Induction of Protein Instability. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_43

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics