Skip to main content

Analysis of Ubiquitin-Dependent Proteolysis in Caenorhabditis elegans

  • Protocol
  • First Online:
Book cover Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

The maintenance of proteostasis is a fundamental process that encompasses refolding and degradation of unfolded and damaged proteins to enable organismal development (1). In eukaryotic cells, the ubiquitin/proteasome system (UPS) is a key determinant of proteostasis by regulating protein turnover. During the past decade, detailed mechanistic insight about the UPS was revealed from extensive studies in mono-cellular systems, such as yeast or tissue culture cells. However, a further challenge is to decipher how ubiquitin-dependent degradation pathways promote cellular differentiation and development of multicellular organisms. In this chapter, we describe an in vivo assay to study protein turnover during development and in differentiated tissues in response to intrinsic and environmental challenges in the multicellular organism Caenorhabditis elegans. This assay is particularly suitable to perform large-scale genetic screens for the identification of novel proteolysis factors and pathways important for developmental processes and opens new avenues for future investigation of tissue- or development-specific proteostasis networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powers ET, Morimoto RI, Dillin A et al (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991.

    Article  PubMed  CAS  Google Scholar 

  2. Ciechanover A, Orian A, Schwartz AL (2000) Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22:442–451.

    Article  PubMed  CAS  Google Scholar 

  3. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180.

    Article  PubMed  CAS  Google Scholar 

  4. Hoppe T (2005) Multiubiquitylation by E4 enzymes: ‘one size’ doesn’t fit all. Trends Biochem Sci 30:183–187.

    Article  PubMed  CAS  Google Scholar 

  5. Koegl M, Hoppe T, Schlenker S et al (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270:17442–17456.

    Article  PubMed  CAS  Google Scholar 

  7. Richly H, Rape M, Braun S et al (2005) A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:73–84.

    Article  PubMed  CAS  Google Scholar 

  8. Jentsch S, Rumpf S (2007) Cdc48 (p97): a “molecular gearbox” in the ubiquitin pathway? Trends Biochem Sci 32:6–11.

    Article  PubMed  CAS  Google Scholar 

  9. Rape M, Hoppe T, Gorr I et al (2001) Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107:667–677.

    Article  PubMed  CAS  Google Scholar 

  10. Bays NW, Gardner RG, Seelig LP et al (2001) Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol 3:24–29.

    Article  PubMed  CAS  Google Scholar 

  11. Braun S, Matuschewski K, Rape M et al (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 21:615–621.

    Article  PubMed  CAS  Google Scholar 

  12. Jarosch E, Taxis C, Volkwein C et al (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139.

    Article  PubMed  CAS  Google Scholar 

  13. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656.

    Article  PubMed  CAS  Google Scholar 

  14. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162:71–84.

    Article  PubMed  CAS  Google Scholar 

  15. Johnson ES, Bartel B, Seufert W, Varshavsky A (1992) Ubiquitin as a degradation signal. EMBO J 11:497–505.

    PubMed  CAS  Google Scholar 

  16. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.

    Article  PubMed  CAS  Google Scholar 

  17. Varshavsky A (1992) The N-end rule. Cell 69:725–735.

    Article  PubMed  CAS  Google Scholar 

  18. Praitis V, Casey E, Collar D, Austin J (2001) Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157:1217–1226.

    PubMed  CAS  Google Scholar 

  19. Kamath RS, Martinez-Campos M, Zipperlen P et al (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:RESEARCH0002.

    Google Scholar 

  20. Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112.

    Article  PubMed  CAS  Google Scholar 

  21. Boulin T, Etchberger JF, Hobert O. (April 5, 2006) Reporter gene fusions in WormBook, ed., The C. elegans Research Community, WormBook,doi/10.1895/wormbook.1.106.1.

    Google Scholar 

  22. Calixto A, Chelur D, Topalidou I et al (2010) Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods 7:554–559.

    Google Scholar 

  23. Schmitz C, Kinge P, Hutter H (2007) Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proc Natl Acad Sci U S A 104:834–839.

    Article  PubMed  CAS  Google Scholar 

  24. Simmer F, Tijsterman M, Parrish S et al (2002) Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr Biol 12:1317–1319.

    Article  PubMed  CAS  Google Scholar 

  25. Rothbauer U, Zolghadr K, Muyldermans S et al (2008) A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol Cell Proteomics 7:282–289.

    PubMed  CAS  Google Scholar 

  26. Doitsidou M, Flames N, Lee AC et al (2008) Automated screening for mutants affecting dopaminergic-neuron specification in C. elegans. Nat Methods 5:869–872.

    Article  PubMed  CAS  Google Scholar 

  27. Sarin S, Prabhu S, O’Meara MM et al (2008) Caenorhabditis elegans mutant allele identification by whole-genome sequencing. Nat Methods 5:865–867.

    Article  PubMed  CAS  Google Scholar 

  28. Segref A, Torres S, Hoppe T (2011) A Screen­able in vivo Assay to Study Proteostasis Networks in Caenorhabditis elegans. Genetics 187:1235–1240.

    Google Scholar 

Download references

Acknowledgments

We thank the Caenorhabditis Genetics Center (funded by the NIH National Center for Research Resources) for strains. This work was supported by grants from the European Community Network of Excellence RUBICON (LSHC-CT-2005-018683 to T.H.), the Deutsche Forschungsgemeinschaft (CECAD, FOR885, SFB635, HO2541/1-1, and HO2541/4-1 to T.H.). T.H. is an EMBO Young Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Segref .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Segref, A., Hoppe, T. (2012). Analysis of Ubiquitin-Dependent Proteolysis in Caenorhabditis elegans . In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_38

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics