Advertisement

SAMe and HuR in Liver Physiology

Usefulness of Stem Cells in Hepatic Differentiation Research
  • Laura Gomez-SantosEmail author
  • Mercedes Vazquez-Chantada
  • Jose Maria Mato
  • Maria Luz Martinez-ChantarEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 826)

Abstract

S-Adenosylmethionine, abbreviated as SAM, SAMe or AdoMet, is the principal methyl group donor in the mammalian cell and the first step metabolite of the methionine cycle, being synthesized by MAT (methionine adenosyltransferase) from methionine and ATP. About 60 years after its identification, SAMe is admitted as a key hepatic regulator whose level needs to be maintained within a specific range in order to avoid liver damage. Recently, in vitro and in vivo studies have demonstrated the regulatory role of SAMe in HGF (hepatocyte growth factor)-mediated hepatocyte proliferation through a mechanism that implicates the activation of the non-canonical LKB1/AMPK/eNOS cascade and HuR function. Regarding hepatic differentiation, cellular SAMe content varies depending on the status of the cell, being lower in immature than in adult hepatocytes. This finding suggests a SAMe regulatory effect also in this cellular process, which very recently was reported and related to HuR activity. Although in the last years this and other discoveries contributed to throw light into the tangle of regulatory mechanisms that govern this complex process, an overall understanding is still a challenge. For this purpose, the in vitro hepatic differentiation culture systems by using stem cells or fetal hepatoblasts are considered as valuable tools which, in combination with the methods used in current days to elucidate cell signaling pathways, surely will help to clear up this question.

Key words

S-Adenosylmethionine (SAMe) MAT (methionine adenosyltransferase) HuR Hepatocyte Liver Hepatocyte differentiation Hepatocyte proliferation Stem cells 

Notes

Acknowledgments

This study was supported by AT-1576 (to JMM and MLM–C), SAF2005-00855, HEPADIP-EULSHM-CT-205, and ETORTEK-2008 (to JMM and MLM–C); Program Ramón y Cajal del MEC and Fundación “La Caixa” (to MLM–C); and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas is funded by the Instituto de Salud Carlos III.

References

  1. 1.
    Cantoni G.L. (1975) Biological methylation: selected aspects. Annu Rev Biochem 44, 435–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Finkelstein J.D., Martin J.J. (1984) Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J Biol Chem 259, 9508–9513.Google Scholar
  3. 3.
    Mato J.M., Alvarez L., Ortiz P. et al. (1997) S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 73, 265–280.PubMedCrossRefGoogle Scholar
  4. 4.
    Mato J.M., Corrales F.J., Lu S.C. et al. (2002) S-adenosylmethionine: a control switch that regulates liver function. FASEB J 16, 15–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Mato J.M., Lu S.C. (2007) Role of S-adenosyl-l-methionine in liver health and injury. Hepatol 45,1306–1312.CrossRefGoogle Scholar
  6. 6.
    Cai J., Mao Z., Hwang J.J. et al. (1998) Differential expression of methionine adenosyltransferase genes influences the rate of growth of human hepatocellular carcinoma cells. Cancer Res 58, 1444–1450.PubMedGoogle Scholar
  7. 7.
    Mudd S.H., Poole J.R. (1975) Labile methyl balances for normal humans on various dietary regimens. Metabol 24, 721–735.CrossRefGoogle Scholar
  8. 8.
    Best C.H., Hershey J.M., Huntsman M.E. (1932) The effect of lecithin on fat deposition in the liver of the normal rat. J Physiol 75, 56–66.PubMedGoogle Scholar
  9. 9.
    Shivapurkar N., Poirier L.A. (1983) Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis 4, 1051–157.PubMedCrossRefGoogle Scholar
  10. 10.
    Duce A.M., Ortiz P., Cabrero C. et al. (1988) S-Adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis. Hepatol 8, 65–68.CrossRefGoogle Scholar
  11. 11.
    Vendemiale G., Altomare E., Trizio T. et al. (1989) Effect of oral S-adenosyl-L-methionine on hepatic glutathione in patients with liver disease. Stand J Gastroenterol 24, 407–415.CrossRefGoogle Scholar
  12. 12.
    Mato J.M., Cámara J., Fernández de Paz J. et al. (1999) S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. Hepatol 30, 1081–1089.CrossRefGoogle Scholar
  13. 13.
    Mudd S.H., Brosnan J.T., Brosnan M.E. et al. (2007) Methyl balance and transmethylation fluxes in humans. Am J Clin Nutr 85, 19–25.PubMedGoogle Scholar
  14. 14.
    Martínez-Chantar M.L., Vázquez-Chantada M., Ariz U. et al. (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatol 47,1191–1199.CrossRefGoogle Scholar
  15. 15.
    Tseng T.L., Shih Y.P., Huang Y.C. et al. (2003) Genotypic and phenotypic characterization of a putative tumor susceptibility gene, GNMT, in liver cancer. Cancer Res 63, 647–654.PubMedGoogle Scholar
  16. 16.
    Martinez-Chantar M.L., Corrales F.J., Martinez-Cruz L.A. et al. (2002) Spontaneous oxidative stress and liver tumors inmice lacking methionine adenosyltransferase 1A. FASEB J 16, 1292–1294.PubMedGoogle Scholar
  17. 17.
    Lu S.C., Alvarez L., Huang Z.Z. et al. (2001) Methionine adenosyltransferase1A knockout mice are predisposed to liver injury and exhibit increasedexpression of genes involved in proliferation. Proc Natl Acad Sci USA 98, 5560–5565.PubMedCrossRefGoogle Scholar
  18. 18.
    Chen L., Zeng Y., Yang H. et al. (2004) Impaired liver regeneration in mice lacking methionine adenosyltransferase 1A.FASEB J 18, 914–916.PubMedCrossRefGoogle Scholar
  19. 19.
    Varela-Rey M., Fernández-Ramos D., Martínez-López N. et al. (2009) Impaired liver regeneration in mice lacking glycine N-methyltransferase. Hepatol 50, 443–452.CrossRefGoogle Scholar
  20. 20.
    Michalopoulos G.K., DeFrances M.C. (1997) Liver regeneration. Science 276, 60–66.PubMedCrossRefGoogle Scholar
  21. 21.
    Higgins G.M., Anderson R.M. (1931) Experimental pathology of the liver. I.Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 12,186–202.Google Scholar
  22. 22.
    Fausto N., Campbell J.S., Riehle K.J. (2006) Liver regeneration. Hepatol 43(2 Suppl 1):S45–53.CrossRefGoogle Scholar
  23. 23.
    Lindroos P.M., Zarnegar R., Michalopoulos G.K.(1991) Hepatocyte growth factor (hepatopoietin A) rapidly increases in plasma before DNA synthesis and liver regeneration stimulated by partial hepatectomy and carbon tetrachloride administration. Hepatol 13, 743–750.CrossRefGoogle Scholar
  24. 24.
    Hortelano S., Dewez B., Genaro A.M. et al. (1995) Nitric oxide is released in regenerating liver after partial hepatectomy. Hepatol 21, 776–786.Google Scholar
  25. 25.
    Ruiz F., Corrales F.J., Miqueo C. et al. (1998) Nitric oxide inactivates rat hepatic methionine adenosyltransferase In vivo by S-nitrosylation. Hepatol 28, 1051–1057.CrossRefGoogle Scholar
  26. 26.
    Pérez-Mato I., Castro C., Ruiz F.A. et al. (1999) Methionine adenosyltransferase S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target thiol. J Biol Chem 274, 17075–17079.PubMedCrossRefGoogle Scholar
  27. 27.
    Garcia-Trevijano E.R., Martinez-Chantar M.L., Latasa M.U. et al. (2002) NO sensitizes rat hepatocytes to proliferation by modifying S-adenosylmethionine levels. Gastroenterol 122, 1355–1363.CrossRefGoogle Scholar
  28. 28.
    Huang Z.Z., Mao Z., Cai J. et al. (1998) Changes in methionine adenosyltransferase during liver regeneration in the rat. Am J Physiol 275, G14–G21.PubMedGoogle Scholar
  29. 29.
    Pascale R.M., Simile M.M., De Miglio M.R. et al. (1995) Chemoprevention by S-adenosyl-L-methionine of rat liver carcinogenesis initiated by 1,2-dimethylhydrazine and promoted by orotic acid. Carcinogenesis 16. 427–430.PubMedCrossRefGoogle Scholar
  30. 30.
    Ponzetto C., Bardelli A., Zhen Z. et al. (1994) A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77, 261–277.PubMedCrossRefGoogle Scholar
  31. 31.
    Paumelle R., Tulasne D., Kherrouche Z. et al. (2002) Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene 21, 2309–2319.PubMedCrossRefGoogle Scholar
  32. 32.
    Vázquez-Chantada M., Ariz U., Varela-Rey M. et al. (2009) Evidence for LKB1/AMP-activated protein kinase/endothelial nitric oxide synthase cascade regulated by hepatocyte growth factor, S-adenosylmethionine, and nitric oxide in hepatocyte proliferation. Hepatol 49, 608–617.CrossRefGoogle Scholar
  33. 33.
    Hardie D.G., Hawley S.A., Scott J.W. (2006) AMP-activated protein kinase-development of the energy sensory concept. J Physiol 574, 7–15.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang W., Fan J., Yang X. et al. (2002) AMP-activated kinase regulates cytoplasmic HuR. Mol Cell Biol 22, 3425–3436.PubMedCrossRefGoogle Scholar
  35. 35.
    Martinez-Chantar M.L., Vazquez-Chantada M., Garnacho M. et al. (2006) S-adenosylmethionine regulates cytoplasmic HuR via AMP-activated kinase. Gastroenterol 131, 223–232.CrossRefGoogle Scholar
  36. 36.
    Bolognani F., Perrone-Bizzozero N.I. (2008) RNA-protein interactions and control of mRNA stability in neurons. J Neurosci Res 86, 481–489.PubMedCrossRefGoogle Scholar
  37. 37.
    Garneau N.L., Wilusz J., Wilusz C.J. (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8, 113–126.PubMedCrossRefGoogle Scholar
  38. 38.
    Wilusz C.J., Wormington M., Peltz S.W. (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2, 237–246.PubMedCrossRefGoogle Scholar
  39. 39.
    Ma W.J., Cheng S., Campbell C. et al. (1996) Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem 271, 8144–8151.PubMedCrossRefGoogle Scholar
  40. 40.
    Park S., Myszka D.G., Yu M. et al. (2000) HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol 20, 4765–4772.PubMedCrossRefGoogle Scholar
  41. 41.
    Xu N., Chen C.Y., Shyu A.B. (1997) Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 17, 4611–4621.PubMedGoogle Scholar
  42. 42.
    Bevilacqua A., Ceriani M.C., Capaccioli S. et al. (2003) Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol 195, 356–372.PubMedCrossRefGoogle Scholar
  43. 43.
    Keene J.D. (1999) Why is Hu where? Shuttling of early-response-gene messenger RNA subsets. Proc Natl Acad Sci USA 96, 5–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang W., Furneaux H., Cheng H. et al. (2000) HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 20, 760–769.PubMedCrossRefGoogle Scholar
  45. 45.
    Wang W., Caldwell M.C., Lin S. et al. (2000) HuR regulates cyclin A and cyclin B1 mRNA stability during cell proliferation. EMBO J 19, 2340–2350.PubMedCrossRefGoogle Scholar
  46. 46.
    Fan X.C., Steitz J.A. (1998) HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc Natl Acad Sci USA 95, 15293–15298.PubMedCrossRefGoogle Scholar
  47. 47.
    Güttinger S., Mühlhäusser P., Koller-Eichhorn R. et al. (2004)Transportin2 functions as importin and mediates nuclear import of HuR. Proc Natl Acad Sci USA 101, 2918–2923.PubMedCrossRefGoogle Scholar
  48. 48.
    Rebane A., Aab A., Steitz J.A. (2004) Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA 10, 590–599.PubMedCrossRefGoogle Scholar
  49. 49.
    Abdelmohsen K., Lal A., Kim H.H. et al. (2007) Posttranscriptional orchestration of an anti-apoptotic program by HuR. Cell Cycle 6, 1288–1292.PubMedCrossRefGoogle Scholar
  50. 50.
    Katsanou V., Papadaki O., Milatos S. et al. (2005) HuR as a negative posttranscriptional modulator in inflammation. Mol Cell 19, 777–789.PubMedCrossRefGoogle Scholar
  51. 51.
    Levadoux-Martin M., Gouble A., Jégou B. et al. (2003) Impaired gametogenesis in mice that overexpress the RNA-binding protein HuR. EMBO Rep 4, 394–399.PubMedCrossRefGoogle Scholar
  52. 52.
    Van der Giessen K., Gallouzi I. E. (2007) Involvement of transportin 2-mediated HuR import in muscle cell differentiation. Mol Biol Cell 18, 2619–2629.PubMedCrossRefGoogle Scholar
  53. 53.
    Figueroa A., Cuadrado A., Fan J. et al. (2003) Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol Cell Biol 23, 4991–5004.PubMedCrossRefGoogle Scholar
  54. 54.
    Gantt K., Cherry J., Tenney R. et al. (2005) An early event in adipogenesis, the nuclear selection of the CCAAT enhancer-binding protein {beta} (C/EBP{beta}) mRNA by HuR and its translocation to the cytosol. J Biol Chem 280, 24768–2474.PubMedCrossRefGoogle Scholar
  55. 55.
    Doller A., Pfeilschifter J., Eberhardt W. (2008) Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal 20, 2165–2173.PubMedCrossRefGoogle Scholar
  56. 56.
    Abdelmohsen K., Pullmann R Jr., Lal A. et al. (2007) Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell 25, 543–557.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim H. H., Abdelmohsen K., Lal A. et al. (2008) Nuclear HuR accumulation through phosphorylation by Cdk1. Genes Dev 22, 1804–1815.PubMedCrossRefGoogle Scholar
  58. 58.
    Li H., Park S., Kilburn B. et al. (2002) Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J BiolChem 277, 44623–44630.Google Scholar
  59. 59.
    Vázquez-Chantada M., Fernández-Ramos D. et al. ( 2010) HuR/Methyl-HuR and AU-Rich RNA Binding Factor 1 Regulate the Methionine Adenosyltransferase Expressed During Liver Proliferation, Differentiation, and Carcinogenesis. Gastroenterol 138, 1943–1953.CrossRefGoogle Scholar
  60. 60.
    Cai J., Sun W.M., Hwang J.J. et al. (1996) Changes in S-adenosylmethionine synthetase in human liver cancer: molecular characterization and significance. Hepatol 24, 1090–1097.CrossRefGoogle Scholar
  61. 61.
    García-Trevijano E. R., Latasa M.U., Carretero M. V. et al. (2000) S-adenosylmethionine regulates MAT1A and MAT2A gene expression in cultured rat hepatocytes: a new role for S-adenosylmethionine in the maintenance of the differentiated status of the liver. FASEB J 14, 2511–2518.PubMedCrossRefGoogle Scholar
  62. 62.
    Pascale R.M., Marras V., Simile M.M. et al. (1992) Chemoprevention of rat liver carcinogenesis by S-adenosyl-L-methionine: a long-term study. Cancer Res 52, 4979–4986.PubMedGoogle Scholar
  63. 63.
    Si-Tayeb K, Lemaigre FP, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18, 175–189.PubMedCrossRefGoogle Scholar
  64. 64.
    Lemaigre F.P. (2009) Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterol 137, 62–79.CrossRefGoogle Scholar
  65. 65.
    Yamamoto H., Quinn G., Asari A. et al. (2003) Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatol 37, 983–993CrossRefGoogle Scholar
  66. 66.
    Cai J., Zhao Y., Liu Y. et al. (2007) Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatol 45, 1229–1239.CrossRefGoogle Scholar
  67. 67.
    Banas A., Teratani T., Yamamoto Y. et al. (2007) Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes. Hepatol 46, 219–228.CrossRefGoogle Scholar
  68. 68.
    Kang X.Q., Zang W.J., Song T.S. et al. (2005) Rat bone marrow mesenchymal stem cells differentiate into hepatocytes in vitro. World J Gastroenterol 11, 3479-3484.PubMedGoogle Scholar
  69. 69.
    Snykers S., Vanhaecke T., De Becker A. et al. (2007) Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow. BMC Dev Biol 7, 24.PubMedCrossRefGoogle Scholar
  70. 70.
    Tanimizu N., Saito H., Mostov K. et al. (2004) Long-term culture of hepatic progenitors derived from mouse Dlk  +  hepatoblasts. J Cell Sci 117(Pt 26), 6425–6434.PubMedCrossRefGoogle Scholar
  71. 71.
    Fujikawa T., Hirose T., Fujii H. et al. (2003) Purification of adult hepatic progenitor cells using green fluorescent protein (GFP)-transgenic mice and fluorescence-activated cell sorting. J Hepatol 39, 162–170.PubMedCrossRefGoogle Scholar
  72. 72.
    Nowak G., Ericzon B.G., Nava S. et al. (2005) Identification of expandable human hepatic progenitors which differentiate into mature hepatic cells in vivo. Gut 54, 972–979.PubMedCrossRefGoogle Scholar
  73. 73.
    Si-Tayeb K., Noto F.K., Nagaoka M. et al. (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatol 51, 297–305.CrossRefGoogle Scholar
  74. 74.
    Gai H, Leung EL, Costantino PD et al (2009) Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 33, 1184–1193.PubMedCrossRefGoogle Scholar
  75. 75.
    Lysy P.A., Campard D., Smets F. et al. (2008) Stem cells for liver tissue repair: current knowledge and perspectives. World J Gastroenterol 14, 864–875.PubMedCrossRefGoogle Scholar
  76. 76.
    Cho C.H., Parashurama N., Park E.Y. et al. (2008) Homogeneous differentiation of hepatocyte-like cells from embryonic stem cells: applications for the treatment of liver failure. FASEB J 22, 898–909.PubMedCrossRefGoogle Scholar
  77. 77.
    Martínez-Chantar M.L., Latasa M.U., Varela-Rey M. et al. (2003) L-methionine availability regulates expression of the methionine adenosyltransferase 2A gene in human hepatocarcinoma cells: role of S-adenosylmethionine. J Biol Chem 278, 19885–19890.PubMedCrossRefGoogle Scholar
  78. 78.
    Yang H., Sadda M.R., Li M. et al. (2004) S-adenosylmethionine and its metabolite induce apoptosis in HepG2 cells: Role of protein phosphatase 1 and Bcl-x(S). Hepatol 40, 221–231.CrossRefGoogle Scholar
  79. 79.
    Zhuge J (2008) A decrease in S-adenosyl-L-methionine potentiates arachidonic acid cytotoxicity in primary rat hepatocytes enriched in CYP2E1. Mol Cell Biochem 314, 105–112.PubMedCrossRefGoogle Scholar
  80. 80.
    Heermann K.H., Gültekin H., Gerlich W.H. (1988) Protein blotting: techniques and application in virus hepatitis research. Ric Clin Lab 18, 193–221.PubMedCrossRefGoogle Scholar
  81. 81.
    Gassmann M., Grenacher B., Rohde B. et al. (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30, 1845–1855.PubMedCrossRefGoogle Scholar
  82. 82.
    Marx J. (2000) Interfering with gene expression. Science 288, 1370–1372.PubMedCrossRefGoogle Scholar
  83. 83.
    Alessi D.R., Cuenda A., Cohen P. et al. (1995) PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270, 27489–27494.PubMedCrossRefGoogle Scholar
  84. 84.
    Fehrenbach H., Weiskirchen R., Kasper M. et al. (2001) Up-regulated expression of the receptor for advanced glycation end products in cultured rat hepatic stellate cells during transdifferentiation to myofibroblasts. Hepatol 34, 943–952.CrossRefGoogle Scholar
  85. 85.
    Vlahos C.J., Matter W.F., Hui K.Y. et al. (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269, 5241–5248.PubMedGoogle Scholar
  86. 86.
    Duran J., Obach M., Navarro-Sabate A. et al. (2009) Pfkfb3 is transcriptionally upregulated in diabetic mouse liver through proliferative signals. FEBS J 276, 4555–4568.PubMedCrossRefGoogle Scholar
  87. 87.
    Tenenbaum S.A., Carson C.C., Lager P.J. et al. (2000) Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc Natl Acad Sci USA 97, 14085–14090.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Metabolomics UnitCIC bioGUNE, Technology Park of BizkaiaBizkaiaBasque Country, Spain
  2. 2.CIC bioGUNE, Technology Park of BizkaiaBizkaiaBasque Country, Spain
  3. 3.Metabolomics UnitCICbioGUNEBizkaiaBasque Country, Spain

Personalised recommendations