Skip to main content

Virtual Ligand Screening Against Comparative Protein Structure Models

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Virtual ligand screening uses computation to discover new ligands of a protein by screening one or more of its structural models against a database of potential ligands. Comparative protein structure modeling extends the applicability of virtual screening beyond the atomic structures determined by X-ray crystallography or NMR spectroscopy. Here, we describe an integrated modeling and docking protocol, combining comparative modeling by MODELLER and virtual ligand screening by DOCK.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuntz, I. D. (1992) Structure-Based Strategies for Drug Design and Discovery, Science 257, 1078–1082.

    Article  PubMed  CAS  Google Scholar 

  2. Klebe, G. (2000) Recent developments in structure-based drug design, J. Mol. Med. 78, 269–281.

    Article  PubMed  CAS  Google Scholar 

  3. Dailey, M. M., Hait, C., Holt, P. A., Maguire, J. M., Meier, J. B., Miller, M. C., Petraccone, L., and Trent, J. O. (2009) Structure-based drug design: From nucleic acid to membrane protein targets, Exp. Mol. Pathol. 86, 141–150.

    Article  PubMed  CAS  Google Scholar 

  4. Ealick, S. E., and Armstrong, S. R. (1993) Pharmacologically relevant proteins, Curr. Opin. Struct. Biol. 3, 861–867.

    Article  CAS  Google Scholar 

  5. Gschwend, D. A., Good, A. C., and Kuntz, I. D. (1996) Molecular docking towards drug discovery, J. Mol. Recognit. 9, 175–186.

    Article  PubMed  CAS  Google Scholar 

  6. Hoffmann, D., Kramer, B., Washio, T., Steinmetzer, T., Rarey, M., and Lengauer, T. (1999) Two-stage method for protein-ligand docking, J. Med. Chem. 42, 4422–4433.

    Article  PubMed  CAS  Google Scholar 

  7. Stahl, M., and Rarey, M. (2001) Detailed analysis of scoring functions for virtual screening, J. Med. Chem. 44, 1035–1042.

    Article  PubMed  CAS  Google Scholar 

  8. Charifson, P. S., Corkery, J. J., Murcko, M. A., and Walters, W. P. (1999) Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins, J. Med. Chem. 42, 5100–5109.

    Article  PubMed  CAS  Google Scholar 

  9. Abagyan, R., and Totrov, M. (2001) High-throughput docking for lead generation, Curr. Opin. Chem. Biol. 5, 375–382.

    Article  PubMed  CAS  Google Scholar 

  10. Klebe, G. (2006) Virtual ligand screening: strategies, perspectives and limitations, Drug Discov. Today 11, 580–594.

    CAS  Google Scholar 

  11. Sperandio, O., Miteva, M. A., Delfaud, F., and Villoutreix, B. O. (2006) Receptor-based computational screening of compound databases: The main docking-scoring engines, Curr. Protein Peptide Sci. 7, 369–393.

    Article  CAS  Google Scholar 

  12. Hermann, J. C., Marti-Arbona, R., Fedorov, A. A., Fedorov, E., Almo, S. C., Shoichet, B. K., and Raushel, F. M. (2007) Structure-based activity prediction for an enzyme of unknown function, Nature 448, 775-U772.

    Article  PubMed  CAS  Google Scholar 

  13. Kolb, P., Rosenbaum, D. M., Irwin, J. J., Fung, J. J., Kobilka, B. K., and Shoichet, B. K. (2009) Structure-based discovery of beta(2)-adrenergic receptor ligands, P Natl Acad Sci USA 106, 6843–6848.

    Article  CAS  Google Scholar 

  14. Song, L., Kalyanaraman, C., Fedorov, A. A., Fedorov, E. V., Glasner, M. E., Brown, S., Imker, H. J., Babbitt, P. C., Almo, S. C., Jacobson, M. P., and Gerlt, J. A. (2007) Prediction and assignment of function for a divergent N-succinyl amino acid racemase, Nat. Chem. Biol. 3, 486–491.

    Article  PubMed  CAS  Google Scholar 

  15. Kalyanaraman, C., Imker, H. J., Federov, A. A., Federov, E. V., Glasner, M. E., Babbitt, P. C., Almo, S. C., Gerlt, J. A., and Jacobson, M. P. (2008) Discovery of a dipeptide epimerase enzymatic function guided by homology modeling and virtual screening, Structure 16, 1668–1677.

    Article  PubMed  CAS  Google Scholar 

  16. Rakus, J. F., Kalyanaraman, C., Fedorov, A. A., Fedorov, E. V., Mills-Groninger, F. P., Toro, R., Bonanno, J., Bain, K., Sauder, J. M., Burley, S. K., Almo, S. C., Jacobson, M. P., and Gerlt, J. A. (2009) Computation-Facilitated Assignment of the Function in the Enolase Superfamily: A Regiochemically Distinct Galactarate Dehydratase from Oceanobacillus iheyensis, Biochemistry-Us 48, 11546–11558.

    Article  CAS  Google Scholar 

  17. Fan, H., Irwin, J. J., Webb, B. M., Klebe, G., Shoichet, B. K., and Sali, A. (2009) Molecular Docking Screens Using Comparative Models of Proteins, J. Chem. Inf. Model. 49, 2512–2527.

    Article  PubMed  CAS  Google Scholar 

  18. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank, Nucleic Acids Res. 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  19. Bairoch, A., Bougueleret, L., Altairac, S., Amendolia, V., Auchincloss, A., Puy, G. A., Axelsen, K., Baratin, D., Blatter, M. C., Boeckmann, B., Bollondi, L., Boutet, E., Quintaje, S. B., Breuza, L., Bridge, A., Saux, V. B. L., deCastro, E., Ciampina, L., Coral, D., Coudert, E., Cusin, I., David, F., Delbard, G., Dornevil, D., Duek-Roggli, P., Duvaud, S., Estreicher, A., Famiglietti, L., Farriol-Mathis, N., Ferro, S., Feuermann, M., Gasteiger, E., Gateau, A., Gehant, S., Gerritsen, V., Gos, A., Gruaz-Gumowski, N., Hinz, U., Hulo, C., Hulo, N., Innocenti, A., James, J., Jain, E., Jimenez, S., Jungo, F., Junker, V., Keller, G., Lachaize, C., Lane-Guermonprez, L., Langendijk-Genevaux, P., Lara, V., Le Mercier, P., Lieberherr, D., Lima, T. D., Mangold, V., Martin, X., Michoud, K., Moinat, M., Morgat, A., Nicolas, M., Paesano, S., Pedruzzi, I., Perret, D., Phan, I., Pilbout, S., Pillet, V., Poux, S., Pozzato, M., Redaschi, N., Reynaud, S., Rivoire, C., Roechert, B., Sapsezian, C., Schneider, M., Sigrist, C., Sonesson, K., Staehli, S., Stutz, A., Sundaram, S., Tognolli, M., Verbregue, L., Veuthey, A. L., Vitorello, C., Yip, L., Zuletta, L. F., Apweiler, R., Alam-Faruque, Y., Barrell, D., Bower, L., Browne, P., Chan, W. M., Daugherty, L., Donate, E. S., Eberhardt, R., Fedotov, A., Foulger, R., Frigerio, G., Garavelli, J., Golin, R., Horne, A., Jacobsen, J., Kleen, M., Kersey, P., Laiho, K., Legge, D., Magrane, M., Martin, M. J., Monteiro, P., O’Donovan, C., Orchard, S., O’Rourke, J., Patient, S., Pruess, M., Sitnov, A., Whitefield, E., Wieser, D., Lin, Q., Rynbeek, M., di Martino, G., Donnelly, M., van Rensburg, P., Wu, C., Arighi, C., Arminski, L., Barker, W., Chen, Y. X., Crooks, D., Hu, Z. Z., Hua, H. K., Huang, H. Z., Kahsay, R., Mazumder, R., McGarvey, P., Natale, D., Nikolskaya, A. N., Petrova, N., Suzek, B., Vasudevan, S., Vinayaka, C. R., Yeh, L. S., Zhang, J., and Consortium, U. (2008) The Universal Protein Resource (UniProt), Nucleic Acids Res. 36, D190–D195.

    Google Scholar 

  20. Baker, D., and Sali, A. (2001) Protein structure prediction and structural genomics, Science 294, 93–96.

    Article  PubMed  CAS  Google Scholar 

  21. Baker, D. (2000) A surprising simplicity to protein folding, Nature 405, 39–42.

    Article  PubMed  CAS  Google Scholar 

  22. Bonneau, R., and Baker, D. (2001) Ab initio protein structure prediction: Progress and prospects, Annu. Rev. Biophys. Biomol. Struct. 30, 173–189.

    Article  PubMed  CAS  Google Scholar 

  23. Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000) Comparative protein structure modeling of genes and genomes, Annu. Rev. Biophys. Biomol. Struct. 29, 291–325.

    Article  PubMed  CAS  Google Scholar 

  24. Sali, A. (1998) 100,000 protein structures for the biologist, Nat. Struct. Biol. 5, 1029–1032.

    Article  PubMed  CAS  Google Scholar 

  25. Chandonia, J. M., and Brenner, S. E. (2006) The impact of structural genomics: Expectations and outcomes, Science 311, 347–351.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, J. F., Montelione, G. T., and Rost, B. (2007) Novel leverage of structural genomics, Nat. Biotechnol. 25, 850–853.

    Google Scholar 

  27. Pieper, U., Eswar, N., Webb, B., Eramian, E., Kelly, L., Barkan, D. T., Carter, H., Mankoo, P., Karchin, R., Marti-Renom, M. A., Davis, F. P., Sali., A., and Sanchez, R. (2009) MODBASE, a database of annotated comparative protein structure models, and ssociated resources, Nucleic Acids Res. 37, D347–354.

    Google Scholar 

  28. Jacobson, M., and Sali, A. (2004) Comparative protein structure modeling and its applications to drug discovery, Annu. Rep. Med. Chem. 39, 259–276.

    Article  CAS  Google Scholar 

  29. Bissantz, C., Bernard, P., Hibert, M., and Rognan, D. (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets?, Proteins: Struct. Funct. Genet. 50, 5–25.

    CAS  Google Scholar 

  30. Cavasotto, C. N., Orry, A. J. W., and Abagyan, R. A. (2003) Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors, Proteins: Struct. Funct. Genet. 51, 423–433.

    Article  CAS  Google Scholar 

  31. Evers, A., and Klebe, G. (2004) Ligand-supported homology modeling of G-protein-coupled receptor sites: Models sufficient for successful virtual screening, Angewandte Chemie-International Edition 43, 248–251.

    Article  CAS  Google Scholar 

  32. Evers, A., and Klebe, G. (2004) Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model, J. Med. Chem. 47, 5381–5392.

    Article  PubMed  CAS  Google Scholar 

  33. Evers, A., and Klabunde, T. (2005) Structure-based drug discovery using GPCR homology modeling: Successful virtual screening for antagonists of the Alpha1A adrenergic receptor, J. Med. Chem. 48, 1088–1097.

    Article  PubMed  CAS  Google Scholar 

  34. Moro, S., Deflorian, F., Bacilieri, M., and Spalluto, G. (2006) Novel strategies for the design of new potent and selective human A(3) receptor antagonists: An update, Curr. Med. Chem. 13, 639–645.

    Article  PubMed  CAS  Google Scholar 

  35. Nowak, M., Kolaczkowski, M., Pawlowski, M., and Bojarski, A. J. (2006) Homology modeling of the serotonin 5-HT1A receptor using automated docking of bioactive compounds with defined geometry, J. Med. Chem. 49, 205–214.

    Article  PubMed  CAS  Google Scholar 

  36. Chen, J. Z., Wang, J. M., and Xie, X. Q. (2007) GPCR structure-based virtual screening approach for CB2 antagonist search, J. Chem. Inf. Model. 47, 1626–1637.

    Article  PubMed  CAS  Google Scholar 

  37. Zylberg, J., Ecke, D., Fischer, B., and Reiser, G. (2007) Structure and ligand-binding site characteristics of the human P2Y(11) nucleotide receptor deduced from computational modelling and mutational analysis, Biochem. J. 405, 277–286.

    Article  PubMed  CAS  Google Scholar 

  38. Radestock, S., Weil, T., and Renner, S. (2008) Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring, J. Chem. Inf. Model. 48, 1104–1117.

    Article  PubMed  CAS  Google Scholar 

  39. Singh, N., Cheve, G., Ferguson, D. M., and McCurdy, C. R. (2006) A combined ligand-based and target-based drug design approach for G-protein coupled receptors: application to salvinorin A, a selective kappa opioid receptor agonist, J. Comput.-Aided Mol. Des. 20, 471–493.

    Article  PubMed  CAS  Google Scholar 

  40. Kiss, R., Kiss, B., Konczol, A., Szalai, F., Jelinek, I., Laszlo, V., Noszal, B., Falus, A., and Keseru, G. M. (2008) Discovery of novel human histamine H4 receptor ligands by large-scale structure-based virtual screening, J. Med. Chem. 51, 3145–3153.

    Article  PubMed  CAS  Google Scholar 

  41. de Graaf, C., Foata, N., Engkvist, O., and Rognan, D. (2008) Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening, Proteins: Struct. Funct. Bioinform. 71, 599–620.

    Article  Google Scholar 

  42. Diller, D. J., and Li, R. X. (2003) Kinases, homology models, and high throughput docking, J. Med. Chem. 46, 4638–4647.

    Article  PubMed  CAS  Google Scholar 

  43. Oshiro, C., Bradley, E. K., Eksterowicz, J., Evensen, E., Lamb, M. L., Lanctot, J. K., Putta, S., Stanton, R., and Grootenhuis, P. D. J. (2004) Performance of 3D-database molecular docking studies into homology models, J. Med. Chem. 47, 764–767.

    Article  PubMed  CAS  Google Scholar 

  44. Nguyen, T. L., Gussio, R., Smith, J. A., Lannigan, D. A., Hecht, S. M., Scudiero, D. A., Shoemaker, R. H., and Zaharevitz, D. W. (2006) Homology model of RSK2 N-terminal kinase domain, structure-based identification of novel RSK2 inhibitors, and preliminary common pharmacophore, Bioorg. Med. Chem. 14, 6097–6105.

    Article  PubMed  CAS  Google Scholar 

  45. Rockey, W. M., and Elcock, A. H. (2006) Structure selection for protein kinase docking and virtual screening: Homology models or crystal structures?, Curr. Protein Peptide Sci. 7, 437–457.

    Article  CAS  Google Scholar 

  46. Schapira, M., Abagyan, R., and Totrov, M. (2003) Nuclear hormone receptor targeted virtual screening, J. Med. Chem. 46, 3045–3059.

    Article  PubMed  CAS  Google Scholar 

  47. Marhefka, C. A., Moore, B. M., Bishop, T. C., Kirkovsky, L., Mukherjee, A., Dalton, J. T., and Miller, D. D. (2001) Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands, J. Med. Chem. 44, 1729–1740.

    Article  PubMed  CAS  Google Scholar 

  48. Kasuya, A., Sawada, Y., Tsukamoto, Y., Tanaka, K., Toya, T., and Yanagi, M. (2003) Binding mode of ecdysone agonists to the receptor: comparative modeling and docking studies, J. Mol. Model. 9, 58–65.

    PubMed  CAS  Google Scholar 

  49. Li, R. S., Chen, X. W., Gong, B. Q., Selzer, P. M., Li, Z., Davidson, E., Kurzban, G., Miller, R. E., Nuzum, E. O., McKerrow, J. H., Fletterick, R. J., Gillmor, S. A., Craik, C. S., Kuntz, I. D., Cohen, F. E., and Kenyon, G. L. (1996) Structure-based design of parasitic protease inhibitors, Bioorg. Med. Chem. 4, 1421–1427.

    Article  PubMed  CAS  Google Scholar 

  50. Selzer, P. M., Chen, X. W., Chan, V. J., Cheng, M. S., Kenyon, G. L., Kuntz, I. D., Sakanari, J. A., Cohen, F. E., and McKerrow, J. H. (1997) Leishmania major: Molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors, Exp. Parasitol. 87, 212–221.

    Article  PubMed  CAS  Google Scholar 

  51. Enyedy, I. J., Ling, Y., Nacro, K., Tomita, Y., Wu, X. H., Cao, Y. Y., Guo, R. B., Li, B. H., Zhu, X. F., Huang, Y., Long, Y. Q., Roller, P. P., Yang, D. J., and Wang, S. M. (2001) Discovery of small-molecule inhibitors of bcl-2 through structure-based computer screening, J. Med. Chem. 44, 4313–4324.

    Article  PubMed  CAS  Google Scholar 

  52. de Graaf, C., Oostenbrink, C., Keizers, P. H. J., van der Wijst, T., Jongejan, A., and Vemleulen, N. P. E. (2006) Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking, J. Med. Chem. 49, 2417–2430.

    Article  PubMed  Google Scholar 

  53. Katritch, V., Byrd, C. M., Tseitin, V., Dai, D. C., Raush, E., Totrov, M., Abagyan, R., Jordan, R., and Hruby, D. E. (2007) Discovery of small molecule inhibitors of ubiquitin-like poxvirus proteinase I7L using homology modeling and covalent docking approaches, J. Comput.-Aided Mol. Des. 21, 549–558.

    Article  PubMed  CAS  Google Scholar 

  54. Mukherjee, P., Desai, P. V., Srivastava, A., Tekwani, B. L., and Avery, M. A. (2008) Probing the structures of leishmanial farnesyl pyrophosphate synthases: Homology modeling and docking studies, J. Chem. Inf. Model. 48, 1026–1040.

    Article  PubMed  CAS  Google Scholar 

  55. Rotkiewicz, P., Sicinska, W., Kolinski, A., and DeLuca, H. F. (2001) Model of three-dimensional structure of vitamin D receptor and its binding mechanism with 1 alpha,25-dihydroxyvitamin D-3, Proteins: Struct. Funct. Genet. 44, 188–199.

    Article  CAS  Google Scholar 

  56. Que, X. C., Brinen, L. S., Perkins, P., Herdman, S., Hirata, K., Torian, B. E., Rubin, H., McKerrow, J. H., and Reed, S. L. (2002) Cysteine proteinases from distinct cellular compartments are recruited to phagocytic vesicles by Entamoeba histolytica, Mol. Biochem. Parasitol. 119, 23–32.

    Article  PubMed  CAS  Google Scholar 

  57. Parrill, A. L., Echols, U., Nguyen, T., Pham, T. C. T., Hoeglund, A., and Baker, D. L. (2008) Virtual screening approaches for the identification of non-lipid autotaxin inhibitors, Bioorg. Med. Chem. 16, 1784–1795.

    Article  PubMed  CAS  Google Scholar 

  58. Fernandes, M. X., Kairys, V., and Gilson, M. K. (2004) Comparing ligand interactions with multiple receptors via serial docking, J. Chem. Inf. Comput. Sci. 44, 1961–1970.

    Article  PubMed  CAS  Google Scholar 

  59. Kairys, V., Fernandes, M. X., and Gilson, M. K. (2006) Screening drug-like compounds by docking to homology models: A systematic study, J. Chem. Inf. Model. 46, 365–379.

    Article  PubMed  CAS  Google Scholar 

  60. McGovern, S. L., and Shoichet, B. K. (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes, J. Med. Chem. 46, 2895–2907.

    Article  PubMed  CAS  Google Scholar 

  61. Sali, A., and Blundell, T. L. (1993) Comparative Protein Modeling by Satisfaction of Spatial Restraints, J. Mol. Biol. 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  62. Lorber, D. M., and Shoichet, B. K. (1998) Flexible ligand docking using conformational ensembles, Protein Sci. 7, 938–950.

    Article  PubMed  CAS  Google Scholar 

  63. Lorber, D. M., and Shoichet, B. K. (2005) Hierarchical docking of databases of multiple ligand conformations, Curr. Top. Med. Chem. 5, 739–749.

    Article  PubMed  CAS  Google Scholar 

  64. Novoa, E. M., de Pouplana, L. R., Barril, X., and Orozco, M. (2010) Ensemble Docking from Homology Models, J Chem Theory Comput 6, 2547–2557.

    Article  CAS  Google Scholar 

  65. Shoichet, B. K., Bodian, D. L., and Kuntz, I. D. (1992) Molecular Docking Using Shape Descriptors, J. Comput. Chem. 13, 380–397.

    Article  CAS  Google Scholar 

  66. Meng, E. C., Shoichet, B. K., and Kuntz, I. D. (1992) Automated Docking with Grid-Based Energy Evaluation, J. Comput. Chem. 13, 505–524.

    Article  CAS  Google Scholar 

  67. Ferrin, T. E., Huang, C. C., Jarvis, L. E., and Langridge, R. (1988) The Midas Display System, J. Mol. Graphics 6, 13–27.

    Article  CAS  Google Scholar 

  68. SYBYL, 6.7 ed., Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA.

    Google Scholar 

  69. Nicholls, A., and Honig, B. (1991) A Rapid Finite-Difference Algorithm, Utilizing Successive over-Relaxation to Solve the Poisson-Boltzmann Equation, J. Comput. Chem. 12, 435–445.

    Article  CAS  Google Scholar 

  70. Huang, N., Shoichet, B. K., and Irwin, J. J. (2006) Benchmarking sets for molecular docking, J. Med. Chem. 49, 6789–6801.

    Article  PubMed  CAS  Google Scholar 

  71. Terasaka, T., Kinoshita, T., Kuno, M., and Nakanishi, I. (2004) A highly potent non-nucleoside adenosine deaminase inhibitor: Efficient drug discovery by intentional lead hybridization, J. Am. Chem. Soc. 126, 34–35.

    Article  PubMed  CAS  Google Scholar 

  72. Terasaka, T., Nakanishi, I., Nakamura, K., Eikyu, Y., Kinoshita, T., Nishio, N., Sato, A., Kuno, M., Seki, N., and Sakane, K. (2003) Structure-based de novo design of non-nucleoside adenosine deaminase inhibitors (vol 13, pg 1115, 2003), Bioorg. Med. Chem. Lett. 13, 4147–4147.

    Article  CAS  Google Scholar 

  73. Sideraki, V., Wilson, D. K., Kurz, L. C., Quiocho, F. A., and Rudolph, F. B. (1996) Site-directed mutagenesis of histidine 238 in mouse adenosine deaminase: Substitution of histidine 238 does not impede hydroxylate formation, Biochemistry-Us 35, 15019–15028.

    Article  CAS  Google Scholar 

  74. Vedadi, M., Lew, J., Artz, J., Amani, M., Zhao, Y., Dong, A. P., Wasney, G. A., Gao, M., Hills, T., Brokx, S., Qiu, W., Sharma, S., Diassiti, A., Alam, Z., Melone, M., Mulichak, A., Wernimont, A., Bray, J., Loppnau, P., Plotnikova, O., Newberry, K., Sundararajan, E., Houston, S., Walker, J., Tempel, W., Bochkarev, A., Kozieradzki, L., Edwards, A., Arrowsmith, C., Roos, D., Kain, K., and Hui, R. (2007) Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms, Mol. Biochem. Parasitol. 151, 100–110.

    Article  PubMed  CAS  Google Scholar 

  75. Shen, M. Y., and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures, Protein Sci. 15, 2507–2524.

    Article  PubMed  CAS  Google Scholar 

  76. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res. 32, 1792–1797.

    Article  PubMed  CAS  Google Scholar 

  77. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., and Thompson, J. D. (2003) Multiple sequence alignment with the Clustal series of programs, Nucleic Acids Res. 31, 3497–3500.

    Article  PubMed  CAS  Google Scholar 

  78. Notredame, C., Higgins, D. G., and Heringa, J. (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment, J. Mol. Biol. 302, 205–217.

    Article  PubMed  CAS  Google Scholar 

  79. Fiser, A., Do, R. K. G., and Sali, A. (2000) Modeling of loops in protein structures, Protein Sci. 9, 1753–1773.

    Article  PubMed  CAS  Google Scholar 

  80. Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., and Ferrin, T. E. (1982) A Geometric Approach to Macromolecule-Ligand Interactions, J. Mol. Biol. 161, 269–288.

    Article  PubMed  CAS  Google Scholar 

  81. Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., and Weiner, P. (1984) A New Force-Field for Molecular Mechanical Simulation of Nucleic-Acids and Proteins, J. Am. Chem. Soc. 106, 765–784.

    Article  CAS  Google Scholar 

  82. Mysinger, M. M., and Shoichet, B. K. (2010) Rapid Context-Dependent Ligand Desolvation in Molecular Docking, J. Chem. Inf. Model. 50, 1561–1573.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This article is partially based on the MODELLER manual, the DOCK 3.5 manual, and the “DISI” wiki pages (http://wiki.bkslab.org). We also acknowledge funds from Sandler Family Supporting Foundation and National Institutes of Health (R01 GM54762 to AS; R01 GM71896 to BKS and JJI; P01 GM71790 and U54 GM71790 to AS and BKS). We are also grateful to Ron Conway, Mike Homer, Hewlett-Packard, IBM, NetApp, and Intel for hardware gifts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Fan or Andrej Sali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fan, H., Irwin, J.J., Sali, A. (2012). Virtual Ligand Screening Against Comparative Protein Structure Models. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics