Skip to main content

Expanding the Conformational Selection Paradigm in Protein-Ligand Docking

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Conformational selection emerges as a theme in macromolecular interactions. Data validate it as a prevailing mechanism in protein–protein, protein–DNA, protein–RNA, and protein–small molecule drug recognition. This raises the question of whether this fundamental biomolecular binding mechanism can be used to improve drug docking and discovery. Actually, in practice this has already been taking place for some years in increasing numbers. Essentially, it argues for using not a single conformer, but an ensemble. The paradigm of conformational selection holds that because the ensemble is heterogeneous, within it there will be states whose conformation matches that of the ligand. Even if the population of this state is low, since it is favorable for binding the ligand, it will bind to it with a subsequent population shift toward this conformer. Here we suggest expanding it by first modeling all protein interactions in the cell by using Prism, an efficient motif-based protein–protein interaction modeling strategy, followed by ensemble generation. Such a strategy could be particularly useful for signaling proteins, which are major targets in drug discovery and bind multiple partners through a shared binding site, each with some—minor or major—conformational change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. White AW, Westwell AD, Brahemi G (2008) Protein-protein interactions as targets for small-molecule therapeutics in cancer. Expert Rev Mol Med 10:e8

    Article  PubMed  Google Scholar 

  2. Blazer LL, Neubig RR (2009) Small molecule protein-protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacology 34:126–141

    Article  PubMed  CAS  Google Scholar 

  3. Neuvirth H, Raz R, Schreiber G (2004) ProMate: a structure based prediction program to identify the location of protein-protein binding sites. J Mol Biol 338:181–199

    Article  PubMed  CAS  Google Scholar 

  4. Kortemme T, Baker D (2004) Computational design of protein-protein interactions. Curr Opin Chem Biol 8:91–97

    Article  PubMed  CAS  Google Scholar 

  5. Shoemaker BA, Panchenko AR (2007) Deciphering protein-protein interactions. Part I. Experimental techniques and databases. PLoS Comput Biol 3:e42

    Article  PubMed  Google Scholar 

  6. Uetz P, Giot L, Cagney G et al (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  7. Landgraf C, Panni S, Montecchi-Palazzi L et al (2004) Protein interaction networks by proteome peptide scanning. PLoS Biol 2:E14

    Article  PubMed  Google Scholar 

  8. MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289: 1760–1763

    PubMed  CAS  Google Scholar 

  9. Bauer A, Kuster B (2003) Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur J Biochem 270:570–578

    Article  PubMed  CAS  Google Scholar 

  10. Keskin O, Ma B, Rogale K et al (2005) Protein-protein interactions: organization, cooperativity and mapping in a bottom-up Systems Biology approach. Phys Biol 2:S24–35

    Article  PubMed  CAS  Google Scholar 

  11. Ritchie DW (2008) Recent progress and future directions in protein-protein docking. Curr Protein Pept Sci 9:1–15

    Article  PubMed  CAS  Google Scholar 

  12. Chen H, Skolnick J (2008) M-TASSER: an algorithm for protein quaternary structure prediction. Biophys J 94:918–928

    Article  PubMed  CAS  Google Scholar 

  13. Launay G, Simonson T (2008) Homology modelling of protein-protein complexes: a simple method and its possibilities and limitations. BMC Bioinformatics 9:427

    Article  PubMed  Google Scholar 

  14. Kundrotas PJ, Lensink MF, Alexov E (2008) Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles. Int J Biol Macromol 43:198–208

    Article  PubMed  CAS  Google Scholar 

  15. Davis FP, Braberg H, Shen MY et al (2006) Protein complex compositions predicted by structural similarity. Nucleic Acids Res 34:2943–2952

    Article  PubMed  CAS  Google Scholar 

  16. Gunther S, May P, Hoppe A et al (2007) Docking without docking: ISEARCH--prediction of interactions using known interfaces. Proteins 69:839–844

    Article  PubMed  Google Scholar 

  17. Sinha R, Kundrotas PJ, Vakser IA (2010) Docking by structural similarity at protein-protein interfaces. Proteins 78:3235–3241

    Article  PubMed  CAS  Google Scholar 

  18. Illergard K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence--a study of structural response in protein cores. Proteins 77:499–508

    Article  PubMed  CAS  Google Scholar 

  19. Caffrey DR, Somaroo S, Hughes JD et al (2004) Are protein-protein interfaces more conserved in sequence than the rest of the protein surface? Protein Sci 13:190–202

    Article  PubMed  CAS  Google Scholar 

  20. Keskin O, Tsai CJ, Wolfson H et al (2004) A new, structurally nonredundant, diverse data set of protein-protein interfaces and its implications. Protein Sci 13:1043–1055

    Article  PubMed  CAS  Google Scholar 

  21. Tsai CJ, Lin SL, Wolfson HJ et al (1996) A dataset of protein-protein interfaces generated with a sequence-order-independent comparison technique. J Mol Biol 260:604–620

    Article  PubMed  CAS  Google Scholar 

  22. Keskin O, Gursoy A, Ma B et al (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244

    Article  PubMed  CAS  Google Scholar 

  23. Keskin O, Gursoy A, Nussinov R (2008) Principles of protein recognition and properties of protein-protein interfaces. In: Panchenko A, Przytycka T (ed) Protein-protein interactions and networks, vol 9 Springer, London

    Google Scholar 

  24. Martin J (2010) Beauty is in the eye of the beholder: proteins can recognize binding sites of homologous proteins in more than one way. PLoS Comput Biol 6:e1000821

    Article  PubMed  Google Scholar 

  25. Keskin O, Nussinov R (2007) Similar binding sites and different partners: implications to shared proteins in cellular pathways. Structure 15:341–354

    Article  PubMed  CAS  Google Scholar 

  26. Keskin O, Ma B, Nussinov R (2005) Hot regions in protein--protein interactions: the organization and contribution of structurally conserved hot spot residues. J Mol Biol 345:1281–1294

    Article  PubMed  CAS  Google Scholar 

  27. Ma B, Elkayam T, Wolfson H et al (2003) Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci U S A 100:5772–5777

    Article  PubMed  CAS  Google Scholar 

  28. Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots--a review of the protein-protein interface determinant amino-acid residues. Proteins 68:803–812

    Article  PubMed  CAS  Google Scholar 

  29. Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov 6:541–555

    Article  PubMed  CAS  Google Scholar 

  30. Tesmer JJ (2006) Pharmacology. Hitting the hot spots of cell signaling cascades. Science 312:377–378

    Article  PubMed  CAS  Google Scholar 

  31. London N, Movshovitz-Attias D, Schueler-Furman O (2010) The structural basis of peptide-protein binding strategies. Structure 18:188–199

    Article  PubMed  CAS  Google Scholar 

  32. Stein A, Aloy P (2008) Contextual specificity in peptide-mediated protein interactions. PLoS One 3:e2524

    Article  PubMed  Google Scholar 

  33. Austin RJ, Ja WW, Roberts RW (2008) Evolution of class-specific peptides targeting a hot spot of the Galphas subunit. J Mol Biol 377:1406–1418

    Article  PubMed  CAS  Google Scholar 

  34. Koshland DEJ, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385

    Article  PubMed  CAS  Google Scholar 

  35. Tsai CJ, Kumar S, Ma B et al (1999) Folding funnels, binding funnels, and protein function. Protein Sci 8:1181–1190

    Article  PubMed  CAS  Google Scholar 

  36. Ma B, Kumar S, Tsai CJ et al (1999) Folding funnels and binding mechanisms. Protein Eng 12:713–720

    Article  PubMed  CAS  Google Scholar 

  37. Tsai CJ, Ma B, Nussinov R (1999) Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A 96:9970–9972

    Article  PubMed  CAS  Google Scholar 

  38. Kumar S, Ma B, Tsai CJ et al (2000) Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci 9:10–19

    Article  PubMed  CAS  Google Scholar 

  39. Ma B, Shatsky M, Wolfson HJ et al (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11:184–197

    Article  PubMed  CAS  Google Scholar 

  40. Frauenfelder H, Sligar SG, Wolynes PG (1991) The energy landscapes and motions of proteins. Science 254:1598–1603

    Article  PubMed  CAS  Google Scholar 

  41. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796

    Article  PubMed  CAS  Google Scholar 

  42. Masterson LR, Cheng C, Yu T et al (2010) Dynamics connect substrate recognition to catalysis in protein kinase A. Nat Chem Biol 6:821–828

    Article  PubMed  CAS  Google Scholar 

  43. Keskin O (2007) Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies. BMC Struct Biol 7:31

    Article  PubMed  Google Scholar 

  44. Kar G, Keskin O, Gursoy A et al (2010) Allostery and population shift in drug discovery. Curr Opin Pharmacol 10:715–722

    Article  PubMed  CAS  Google Scholar 

  45. Weikl TR, von Deuster C (2009) Selected-fit versus induced-fit protein binding: kinetic differences and mutational analysis. Proteins 75:104–110

    Article  PubMed  CAS  Google Scholar 

  46. Aytuna AS, Gursoy A, Keskin O (2005) Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces. Bioinformatics 21:2850–2855

    Article  PubMed  CAS  Google Scholar 

  47. Ogmen U, Keskin O, Aytuna AS et al (2005) PRISM: protein interactions by structural matching. Nucleic Acids Res 33:W331–336

    Article  PubMed  CAS  Google Scholar 

  48. Mashiach E, Nussinov R, Wolfson HJ (2010) FiberDock: Flexible induced-fit backbone refinement in molecular docking. Proteins 78:1503–1519

    Article  PubMed  CAS  Google Scholar 

  49. Aloy P, Bottcher B, Ceulemans H et al (2004) Structure-based assembly of protein complexes in yeast. Science 303:2026–2029

    Article  PubMed  CAS  Google Scholar 

  50. Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5:e1000601

    Article  PubMed  Google Scholar 

  51. Tuncbag N, Kar G, Gursoy A et al (2009) Towards inferring time dimensionality in protein-protein interaction networks by integrating structures: the p53 example. Mol Biosyst 5:1770–1778

    Article  PubMed  CAS  Google Scholar 

  52. Keskin O, Gursoy A, Ma B et al (2007) Towards drugs targeting multiple proteins in a systems biology approach. Curr Top Med Chem 7:943–951

    Article  PubMed  CAS  Google Scholar 

  53. Arkin MR, Wells JA (2004) Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat Rev Drug Discov 3:301–317

    Article  PubMed  CAS  Google Scholar 

  54. Ozbabacan SE, Gursoy A, Keskin O et al (2010) Conformational ensembles, signal transduction and residue hot spots: application to drug discovery. Curr Opin Drug Discov Devel 13:527–537

    CAS  Google Scholar 

  55. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  56. Tuncbag N, Keskin O, Gursoy A (2010) HotPoint: hot spot prediction server for protein interfaces. Nucleic Acids Res 38 Suppl:W402–406

    Article  PubMed  CAS  Google Scholar 

  57. Hubbard SJ TJ (1993) in “Department of Biochemistry and Molecular Biology”, University College, London.

    Google Scholar 

  58. Jones S, Thornton JM (1997) Analysis of protein-protein interaction sites using surface patches. J Mol Biol 272:121–132

    Article  PubMed  CAS  Google Scholar 

  59. Nussinov R, Wolfson HJ (1991) Efficient detection of three-dimensional structural motifs in biological macromolecules by computer vision techniques. Proc Natl Acad Sci U S A 88:10495–10499

    Article  PubMed  CAS  Google Scholar 

  60. Shatsky M, Nussinov R, Wolfson HJ (2004) A method for simultaneous alignment of multiple protein structures. Proteins 56:143–156

    Article  PubMed  CAS  Google Scholar 

  61. Ortutay C, Valiaho J, Stenberg K et al (2005) KinMutBase: a registry of disease-causing mutations in protein kinase domains. Hum Mutat 25:435–442

    Article  PubMed  CAS  Google Scholar 

  62. Smith BJ, Huang K, Kong G et al (2010) Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci U S A 107: 6771–6776

    Article  PubMed  CAS  Google Scholar 

  63. de la Monte SM, Tong M, Lester-Coll N et al (2006) Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis 10:89–109

    PubMed  Google Scholar 

  64. Zhang H, Fagan DH, Zeng X et al (2010) Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene 29:2517–2527

    Article  PubMed  CAS  Google Scholar 

  65. Ulanet DB, Ludwig DL, Kahn CR et al (2010) Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy. Proc Natl Acad Sci U S A 107:10791–10798

    Article  PubMed  CAS  Google Scholar 

  66. Belfiore A, Frasca F (2008) IGF and insulin receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia 13:381–406

    Article  PubMed  Google Scholar 

  67. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450: 1001–1009

    Article  PubMed  CAS  Google Scholar 

  68. Dolgin E (2010) Targeting hotspots of transmission promises to reduce malaria. Nat Med 16:1055

    Article  PubMed  CAS  Google Scholar 

  69. Landon MR, Amaro RE, Baron R et al (2008) Novel druggable hot spots in avian influenza neuraminidase H5N1 revealed by computational solvent mapping of a reduced and representative receptor ensemble. Chem Biol Drug Des 71:106–116

    Article  PubMed  CAS  Google Scholar 

  70. Busschots K, De Rijck J, Christ F et al (2009) In search of small molecules blocking interactions between HIV proteins and intracellular cofactors. Mol Biosyst 5:21–31

    Article  PubMed  CAS  Google Scholar 

  71. Lorber DM, Shoichet BK (1998) Flexible ligand docking using conformational ensembles. Protein Sci 7:938–950

    Article  PubMed  CAS  Google Scholar 

  72. Chaudhury S, Gray JJ (2008) Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles. J Mol Biol 381: 1068–1087

    Article  PubMed  CAS  Google Scholar 

  73. Wong S, Jacobson MP (2008) Conformational selection in silico: loop latching motions and ligand binding in enzymes. Proteins 71:153–164

    Article  PubMed  CAS  Google Scholar 

  74. Ding Y, Mamonov AB, Zuckerman DM (2010) Efficient equilibrium sampling of all-atom peptides using library-based Monte Carlo. J Phys Chem B 114:5870–5877

    Article  PubMed  CAS  Google Scholar 

  75. Cashman DJ, Mamonov AB, Bhatt D et al (2010) Thermal Motions of the E. Coli Glucose-Galactose Binding Protein Studied Using Well-Sampled, Semi-Atomistic Simulations. Curr Top Med Chem

    Google Scholar 

  76. Autore F, Melchiorre S, Kleinjung J et al (2007) Interaction of malaria parasite-inhibitory antibodies with the merozoite surface protein MSP1(19) by computational docking. Proteins 66:513–527

    Article  PubMed  CAS  Google Scholar 

  77. Huang Z, Wong CF (2009) Conformational selection of protein kinase A revealed by flexible-ligand flexible-protein docking. J Comput Chem 30:631–644

    Article  PubMed  CAS  Google Scholar 

  78. Tuncbag N, Gursoy A, Nussinov R et al (2011) Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat Protoc 6:1341–1354

    Google Scholar 

Download references

Acknowledgments

This work has been supported by TUBITAK (Research Grant Numbers: 109T343 and 109E207). Guray Kuzu is supported by a TUBITAK fellowship. This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under contract number HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported (in part) by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Nussinov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuzu, G., Keskin, O., Gursoy, A., Nussinov, R. (2012). Expanding the Conformational Selection Paradigm in Protein-Ligand Docking. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics