Skip to main content

High-Throughput Virtual Screening Lead to Discovery of Non-Peptidic Inhibitors of West Nile Virus NS3 Protease

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

The non-structural 3 protease is an essential flaviviral enzyme and therefore one of the most promising targets for drug development against West Nile virus infections. In this chapter, we discuss in detail the computational methods used in the previous two docking campaigns which lead to the discovery of non-peptidic low micromolar inhibitors. Not only an X-ray structure but also an alternative conformation generated from molecular dynamic simulations is used in the in silico screening. Moreover, unique scoring schemes are developed based on the properties of the binding site of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13–22.

    Article  PubMed  CAS  Google Scholar 

  2. Chappell KJ, Stoermer MJ, Fairlie DP, Young PR (2006) Insights to substrate binding and processing by West Nile Virus NS3 protease through combined modeling, protease mutagenesis, and kinetic studies. J Biol Chem 281:38448–38458.

    Article  PubMed  CAS  Google Scholar 

  3. Yusof R, Clum S, Wetzel M, Murthy HM, Padmanabhan R (2000) Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969.

    Article  PubMed  CAS  Google Scholar 

  4. Erbel P, Schiering N, D’Arcy A, Renatus M, Kroemer M, et al. (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373.

    Article  PubMed  CAS  Google Scholar 

  5. Robin G, Chappell K, Stoermer MJ, Hu SH, Young PR, et al. (2009) Structure of West Nile virus NS3 protease: ligand stabilization of the catalytic conformation. J Mol Biol 385:1568–1577.

    Article  PubMed  CAS  Google Scholar 

  6. Aleshin AE, Shiryaev SA, Strongin AY, Liddington RC (2007) Structural evidence for regulation and specificity of flaviviral proteases and evolution of the flaviviridae fold. Protein Sci 16:795–806.

    Article  PubMed  CAS  Google Scholar 

  7. Knox JE, Ma NL, Yin Z, Patel SJ, Wang WL, et al. (2006) Peptide inhibitors of West Nile NS3 protease: SAR study of tetrapeptide aldehyde inhibitors. J Med Chem 49:6585–6590.

    Article  PubMed  CAS  Google Scholar 

  8. Shiryaev SA, Ratnikov BI, Chekanov AV, Sikora S, Rozanov DV, et al. (2006) Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochem J 393:503–511.

    Article  PubMed  CAS  Google Scholar 

  9. Ganesh VK, Muller N, Judge K, Luan CH, Padmanabhan R, et al. (2005) Identification and characterization of nonsubstrate based inhibitors of the essential dengue and West Nile virus proteases. Bioorg Med Chem 13:257–264.

    Article  PubMed  CAS  Google Scholar 

  10. Johnston PA, Phillips J, Shun TY, Shinde S, Lazo JS, et al. (2007) HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus. Assay Drug Dev Technol 5:737–750.

    Article  PubMed  CAS  Google Scholar 

  11. Mueller NH, Pattabiraman N, Ansarah-Sobrinho C, Viswanathan P, Pierson TC, et al. (2008) Identification and biochemical characterization of small molecule inhibitors of West Nile virus serine protease by a high throughput screen. Antimicrob Agents Chemother 52:3385–3393.

    Article  PubMed  CAS  Google Scholar 

  12. Ekonomiuk D, Su XC, Ozawa K, Bodenreider C, Lim SP, et al. (2009) Discovery of a non-peptidic inhibitor of West Nile virus NS3 protease by high-throughput docking. PloS neglected tropical diseases 3:e356.

    Article  PubMed  Google Scholar 

  13. Ekonomiuk D, Su XC, Bodenreider C, Lim SP, Otting G, et al. (2009) Flaviviral protease inhibitors identified by fragment-based library docking into a structure generated by molecular dynamics. J Med Chem 52:4860–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kolb P, Caflisch A (2006) Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking. J Med Chem 49:7384–7392.

    Article  PubMed  CAS  Google Scholar 

  15. Majeux N, Scarsi M, Apostolakis J, Ehrhardt C, Caflisch A (1999) Exhaustive docking of molecular fragments on protein binding sites with electrostatic solvation. Proteins: Structure, Function, and Bioinformatics 37:88–105.

    CAS  Google Scholar 

  16. Budin N, Majeux N, Caflisch A (2001) Fragment-based flexible ligand docking by evolutionary opimization. Biol Chem 382:1365–1372.

    Article  PubMed  CAS  Google Scholar 

  17. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors A32:922–923.

    Google Scholar 

  18. Scarsi M, Apostolakis J, Caflisch A (1997) Continuum electrostatic energies of macromolecules in aqueous solutions. J Phys Chem A 101:8098–8106.

    Article  CAS  Google Scholar 

  19. Huang D, Caflisch A (2004) Efficient evaluation of binding free energy using continuum electrostatic solvation. J Med Chem 47:5791–5797.

    Article  PubMed  CAS  Google Scholar 

  20. Kolb P, Huang D, Dey F, Caflisch A (2008) Discovery of kinase inhibitors by high-throughput docking and scoring based on a transferable linear interaction energy model. J Med Chem 51:1179–1188.

    Article  PubMed  CAS  Google Scholar 

  21. Friedman R, Caflisch A (2009) Discovery of plasmepsin inhibitors by fragment-based docking and consensus scoring. ChemMedChem 4:1317–26.

    Article  PubMed  CAS  Google Scholar 

  22. Å qvist J, Medina C, Samuelsson JE (1994) A new method for predicting binding affinity in computer-aided drug design. Protein Engineering 7:385–391.

    Article  Google Scholar 

  23. Hansson T, Å qvist J (1995) Estimation of binding free energies for HIV proteinase inhibitors by molecular dynamics simulations. Protein Engineering 8:1137–1144.

    Article  PubMed  CAS  Google Scholar 

  24. Brooks III CL, Karplus M (1983) Deformable stochastic boundaries in molecular dynamics. J Chem Phys 79:6312–6325.

    Article  CAS  Google Scholar 

  25. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, et al. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217.

    Article  CAS  Google Scholar 

  26. Brooks BR, Brooks III CL, Mackerell ADJ, Nilsson L, Petrella RJ, et al. (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–614.

    Article  PubMed  CAS  Google Scholar 

  27. MacKerell Jr ea AD, M K (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616.

    Article  Google Scholar 

  28. Irwin JJ, Shoichet BK (2005) ZINC–a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182.

    Article  PubMed  CAS  Google Scholar 

  29. Momany F, Rone R (1992) Validation of the general purpose QUANTA 3.2/CHARMm force field. J Comput Chem 13:888–900.

    Article  CAS  Google Scholar 

  30. No K, Grant J, Scheraga H (1990) Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 1. Application to neutral molecules as models for polypeptides. J Phys Chem 94:4732–4739.

    Article  CAS  Google Scholar 

  31. No K, Grant J, Jhon M, Scheraga H (1990) Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. 2. Application to ionic and aromatic molecules as models for polypeptides. J Phys Chem 94:4740–4746.

    Article  CAS  Google Scholar 

  32. Caflisch A, Fischer S, Karplus M (1997) Docking by Monte Carlo minimization with a solvation correction: Application to an FKBP-substrate complex. J Comput Chem 18:723–743.

    Article  CAS  Google Scholar 

  33. Majeux N, Scarsi M, Caflisch A (2001) Efficient electrostatic solvation model for protein-fragment docking. Proteins: Structure, Function, and Bioinformatics 42:256–268.

    Article  CAS  Google Scholar 

  34. Cecchini M, Kolb P, Majeux N, Caflisch A (2004) Automated docking of highly flexible ligands by genetic algorithms: A critical assessment. J Comput Chem 25:412–422.

    Article  PubMed  CAS  Google Scholar 

  35. Bodenreider C, Beer D, Keller TH, Sonntag S, Wen D, et al. (2009) A fluorescence quenching assay to discriminate between specific and nonspecific inhibitors of dengue virus protease. Anal Biochem 395:195–204.

    Article  PubMed  CAS  Google Scholar 

  36. Bemis G, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Drs. Amedeo Caflisch and Dariusz Ekonomiuk for performing part of the computational work in the two docking studies and critical discussions, thank A. Widmer (Novartis Pharma, Basel) for providing a program for multiple linear regression and the molecular modeling program Wit!P, which was used for preparing the structures, and also thank OpenEye Scientific Software Inc. for providing Filter v2.0.1, which was used for preparing the library for docking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danzhi Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huang, D. (2012). High-Throughput Virtual Screening Lead to Discovery of Non-Peptidic Inhibitors of West Nile Virus NS3 Protease. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_36

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics